dc.contributor.author
Shmilovich, Kirill
dc.contributor.author
Stieffenhofer, Marc
dc.contributor.author
Charron, Nicholas E.
dc.contributor.author
Hoffmann, Moritz
dc.date.accessioned
2023-01-16T12:29:00Z
dc.date.available
2023-01-16T12:29:00Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37615
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37330
dc.description.abstract
Coarse-graining offers a means to extend the achievable time and length scales of molecular dynamics simulations beyond what is practically possible in the atomistic regime. Sampling molecular configurations of interest can be done efficiently using coarse-grained simulations, from which meaningful physicochemical information can be inferred if the corresponding all-atom configurations are reconstructed. However, this procedure of backmapping to reintroduce the lost atomistic detail into coarse-grain structures has proven a challenging task due to the many feasible atomistic configurations that can be associated with one coarse-grain structure. Existing backmapping methods are strictly frame-based, relying on either heuristics to replace coarse-grain particles with atomic fragments and subsequent relaxation or parametrized models to propose atomic coordinates separately and independently for each coarse-grain structure. These approaches neglect information from previous trajectory frames that is critical to ensuring temporal coherence of the backmapped trajectory, while also offering information potentially helpful to producing higher-fidelity atomic reconstructions. In this work, we present a deep learning-enabled data-driven approach for temporally coherent backmapping that explicitly incorporates information from preceding trajectory structures. Our method trains a conditional variational autoencoder to nondeterministically reconstruct atomistic detail conditioned on both the target coarse-grain configuration and the previously reconstructed atomistic configuration. We demonstrate our backmapping approach on two exemplar biomolecular systems: alanine dipeptide and the miniprotein chignolin. We show that our backmapped trajectories accurately recover the structural, thermodynamic, and kinetic properties of the atomistic trajectory data.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computational chemistry
en
dc.subject
Computer simulations
en
dc.subject
Molecular mechanics
en
dc.subject
Thermodynamics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Temporally Coherent Backmapping of Molecular Trajectories From Coarse-Grained to Atomistic Resolution
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acs.jpca.2c07716
dcterms.bibliographicCitation.journaltitle
The Journal of Physical Chemistry A
dcterms.bibliographicCitation.number
48
dcterms.bibliographicCitation.pagestart
9124
dcterms.bibliographicCitation.pageend
9139
dcterms.bibliographicCitation.volume
126
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.jpca.2c07716
refubium.affiliation
Physik
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1520-5215
refubium.resourceType.provider
WoS-Alert