dc.contributor.author
Ghazanfari, Mohammad R.
dc.contributor.author
Santhosh, Archa
dc.contributor.author
Siemensmeyer, Konrad
dc.contributor.author
Fuß, Friederike
dc.contributor.author
Staab, Lennart
dc.contributor.author
Vrijmoed, Johannes C.
dc.contributor.author
Peters, Bertram
dc.contributor.author
Liesegang, Moritz
dc.contributor.author
Dehnen, Stefanie
dc.contributor.author
Oeckler, Oliver
dc.contributor.author
Jerabek, Paul
dc.contributor.author
Thiele, Günther
dc.date.accessioned
2022-11-29T11:33:35Z
dc.date.available
2022-11-29T11:33:35Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37077
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-36791
dc.description.abstract
The multigram synthesis of K2[Fe3S4] starting from K2S and FeS is presented, and its electronic and magnetic properties are investigated. The title compound obtains a defect variant of the K[Fe2Se2] structure type. Dielectric and impedance measurements indicate a dielectric constant of 1120 at 1 kHz and an outstanding ionic conductivity of 24.37 mS cm–1 at 295 K, which is in the range of the highest reported value for potential solid‐state electrolytes for potassium‐ion batteries. The Seebeck coefficient of the n‐type conductor amounts to −60 µV K−1 at 973 K. The mismatch of the measured electrical resistivity and the predicted metal‐like band structure by periodic quantum chemical calculations indicates Mott insulating behavior. Magnetometry demonstrates temperature‐dependent, large exchange bias fields of 35 mT, as a consequence of the coexistence of spin glass and antiferromagnetic orderings due to the iron vacancies in the lattice. In addition, the decreasing training effects of 34% in the exchange bias are identified at temperatures lower than 20 K. These results demonstrate the critical role of iron vacancies in tuning the electronic and magnetic properties and a multifunctional material from abundant and accessible elements.
en
dc.format.extent
10 Seiten
dc.rights
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
frustrated magnetism
en
dc.subject
iron vacancy
en
dc.subject
Mott insulators
en
dc.subject
solid‐state electrolytes
en
dc.subject
transport properties
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Large Exchange Bias, High Dielectric Constant, and Outstanding Ionic Conductivity in a Single‐Phase Spin Glass
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2200483
dcterms.bibliographicCitation.doi
10.1002/aelm.202200483
dcterms.bibliographicCitation.journaltitle
Advanced Electronic Materials
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.1002/aelm.202200483
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geochemie, Hydrogeologie, Mineralogie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2199-160X
refubium.resourceType.provider
DeepGreen