The β-emitting 99Tc isotope is a high-yield fission product in 235U and 239Pu nuclear reactors, raising special concern in nuclear waste management due to its long half-life and the high mobility of pertechnetate (TcO4−). Under the conditions of deep nuclear waste repositories, Tc is retained through biotic and abiotic reduction of TcO4− to compounds like amorphous TcO2 ⋅ xH2O precipitates. It is generally accepted that these precipitates have linear (Tc(μ-O)2(H2O)2)n chains, with trans H2O. Although corresponding Tc−Tc and Tc−O distances have been obtained from extended X-ray absorption fine structure (EXAFS) spectroscopy, this structure is largely based on analogy with other compounds. Here, we combine density-functional theory with EXAFS measurements of fresh and aged samples to show that, instead, TcO2 ⋅ xH2O forms zigzag chains that undergo a slow aging process whereby they combine to form longer chains and, later, a tridimensional structure that might lead to a new TcO2 polymorph.