The application area of supercritical fluid chromatography expanded tremendously over the last years and more polar analytes such as biomolecules have become accessible. The growing interest in biopharmaceuticals and associated regulatory requirements demand alternative analytical tools. The orthogonal nature of supercritical fluid chromatography compared to reversed-phase liquid chromatography meets these needs and makes it a useful option during research and development.
In this study, we present a systematic approach for the development of a supercritical fluid chromatography method for fingerprinting of tyrothricin, a complex therapeutic peptide covering a mass range from 1200 to 1900 Da. The substance was chosen due to the presence of cyclic and linear peptides and isomeric or highly similar amino acid sequences. Different column chemistries covering neutral, basic, and zwitterionic functionalities in combination with acidic, basic, and neutral additives were screened. Subsequently, Design-of-Experiments principles were utilized to perform optimization of the chromatographic parameters. The final mass spectrometry-compatible gradient method using a diol stationary phase, carbon dioxide, and a modifier consisting of methanol/water/methanesulfonic acid (100:2:0.1, v:v:v) was found to provide orthogonality and superior resolution to other methods published. Isomeric peptide compounds coeluting in reversed-phase liquid chromatography were resolved by applying the final method.