In this study we aim at refining our understanding of the floristic connectivity of the loma- and precordillera floras of southern Peru and northern Chile and the parameters determining vegetation cover in this region. We used multivariate analyses to test for floristic- and environmental similarity across 53 precordillera and loma locations in Peru and Chile. We propose the use of predictive modeling in estimating the extent of desert vegetation as a complementary method to remote sensing. We created habitat suitability models for the vegetation on the coast and in the precordillera based on a combination of latent bioclimatic variables and additional environmental predictors using Maxent. We found Peruvian and Chilean lomas to be strongly floristically differentiated, as are the Chilean precordillera and lomas. Conversely, there is clear connectivity between both the Peruvian loma- and precordillera floras on the one hand and the Peruvian and Chilean precordillera floras on the other. Divergent environmental conditions were retrieved as separating the precordillera and lomas, while environmental conditions are not differentiated between Peruvian and Chilean lomas. Peruvian and Chilean precordilleras show a gradual change in environmental conditions. Habitat suitability models of vegetation cover retrieve a gap for the loma vegetation along the coast between Peru and Chile, while a continuous belt of suitable habitats is retrieved along the Andean precordillera. Unsuitable habitat for loma vegetation north and south of the Chilean and Peruvian border likely represents an ecogeographic barrier responsible for the floristic divergence of Chilean and Peruvian lomas. Conversely, environmental parameters change continuously along the precordilleras, explaining the moderate differentiation of the corresponding floras. Our results underscore the idea of the desert core acting as an ecogeographic barrier separating the coast from the precordillera in Chile, while it has a more limited isolating function in Peru. We also find extensive potentially suitable habitats for both loma- and precordillera vegetation so far undetected by methods of remote sensing.