Minimally inconsistent LP (MiLP) is a nonmonotonic paraconsistent logic based on Graham Priest’s logic of paradox (LP). Unlike LP, MiLP purports to recover, in consistent situations, all of classical reasoning. The present paper conducts a proof-theoretic analysis of MiLP. I highlight certain properties of this logic, introduce a simple sequent system for it, and establish soundness and completeness results. In addition, I show how to use my proof system in response to a criticism of this logic put forward by J. C. Beall.