dc.contributor.author
Kleber, Julian Manuel
dc.date.accessioned
2023-01-17T05:42:01Z
dc.date.available
2023-01-17T05:42:01Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34785
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34504
dc.description.abstract
For decades, the drug design community was concerned with deriving insights for their
targets from a static picture using X-ray crystallography and pharmacophores. Likewise,
computational methods for in silico studies of ligand binding rely heavily on docking, a
static method. Still, computational methods such as molecular dynamics (MD) simulations
were gaining prominence in the field of computational drug design. In consequence, as the
computational power increased and the simulation technology matured, MD simulations
became more and more critical for the drug design process. Thus, innately, there have to be
deep conflicts between the current pool of models derived from a static mindset and insights
derived from dynamic modelling. The recent introduction of structure-based ensemble-
QSAR methods[1] and dynamic pharmacophores, termed Dynophores[2] served as a primer
to bridge the gap between the two ways of modelling supramolecular complexes common
in computational drug design. Recently, Dynophores replaced classical pharmacophores in
a virtual screening study on the DNA topoisomerase IIa[3].
The subsequent work focuses on the development and the application of a new method-
ology deriving models from MD simulations using lean project management techniques,
Dynophores and Markov modelling. The newly developed methodology abandons the static
picture entirely, and investigates three prominent drug targets. The first target is the ZIKA
virus protease and serves as a benchmark against domain expert knowledge for designing
de novo inhibitors[4]. The second target is the human cyclin dependent kinase 2 (CDK2)
complexed with three different ligands[5,6]. The system serves as a benchmark to derive
new insights from experimental data, as the mechanisms of action and inhibition of CDK2
are up to now not genuinely understood. The third system is the hepatitis C virus (HCV)
NS3/4A protease shall serve as a test if the method can explain resistance mechanisms
in prominent pathogens against data derived from standard experimental protocols. Four
different supramolecular complexes of the NS3/4A protease containing the wild type and
three different mutations, each complexed with vaniprevir[7,8] were investigated. For all
three test systems, new insights were generated
en
dc.format.extent
60 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Lean management
en
dc.subject
Entrepreneurship
en
dc.subject
Deep learning
en
dc.subject
Slow clollective variables
en
dc.subject
Variational principle
en
dc.subject
Molecular dynamics
en
dc.subject
Quantum mechanics
en
dc.subject
Supramolecular complex
en
dc.subject
Equation of motion
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::005 Computerprogrammierung, Programme, Daten
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::006 Spezielle Computerverfahren
dc.subject.ddc
500 Naturwissenschaften und Mathematik::500 Naturwissenschaften::500 Naturwissenschaften und Mathematik
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::615 Pharmakologie, Therapeutik
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::616 Krankheiten
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::541 Physikalische Chemie
dc.title
Markov-chain modelling of dynamic interaction patterns in supramolecular complexes
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-34785-8
refubium.affiliation
Mathematik und Informatik
refubium.resourceType.isindependentpub
yes
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access