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Abstract

For decades, the drug design community was concerned with deriving insights for their
targets from a static picture using X-ray crystallography and pharmacophores. Likewise,
computational methods for in silico studies of ligand binding rely heavily on docking, a
static method. Still, computational methods such as molecular dynamics (MD) simulations
were gaining prominence in the field of computational drug design. In consequence, as the
computational power increased and the simulation technology matured, MD simulations
became more and more critical for the drug design process. Thus, innately, there have to be
deep conflicts between the current pool of models derived from a static mindset and insights
derived from dynamic modelling. The recent introduction of structure-based ensemble-
QSAR methods[1] and dynamic pharmacophores, termed Dynophores[2] served as a primer
to bridge the gap between the two ways of modelling supramolecular complexes common
in computational drug design. Recently, Dynophores replaced classical pharmacophores in
a virtual screening study on the DNA topoisomerase IIa[3].

The subsequent work focuses on the development and the application of a new method-
ology deriving models from MD simulations using lean project management techniques,
Dynophores and Markov modelling. The newly developed methodology abandons the static
picture entirely, and investigates three prominent drug targets. The first target is the ZIKA
virus protease and serves as a benchmark against domain expert knowledge for designing
de novo inhibitors[4]. The second target is the human cyclin dependent kinase 2 (CDK2)
complexed with three di�erent ligands[5,6]. The system serves as a benchmark to derive
new insights from experimental data, as the mechanisms of action and inhibition of CDK2
are up to now not genuinely understood. The third system is the hepatitis C virus (HCV)
NS3/4A protease shall serve as a test if the method can explain resistance mechanisms
in prominent pathogens against data derived from standard experimental protocols. Four
di�erent supramolecular complexes of the NS3/4A protease containing the wild type and
three di�erent mutations, each complexed with vaniprevir [7,8] were investigated. For all
three test systems, new insights were generated.
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1 Introduction

1.1 Motivation

The aim of developing new software tools for drug design is to accelerate the development of
novel and highly potent drug candidates. Traditionally, drug designers are using Molecular
dynamics simulations to analyse dynamic behaviour of their targets. By developing new
methods and a more profound understanding of the mechanisms of diseases and their
countermeasures, this goal can be achieved on the technical level. To understand the needs
of drug designers, a user survey was conducted to find out the main reasons why drug
designers use dynamic modelling. The survey was prepared from a total of five questions.
The questions were

1. Why do you use MD simulations in your workflow?

2. How long do you typically simulate?

3. Why do you use Dynophores as an analysis tool?

4. Do you use Umbrella-Sampling or other advanced sampling techniques? If so, why?

5. What do you hope for in new analysis tools?

From all the answers to all of these questions, the word cloud in Figure 1.1.1 was generated.
The word cloud was generated with the Python package wordcloud [9].

From the word cloud in Figure 1.1.1 the following goal of building new software for drug
design was conducted

Drug designers applying dynamic modelling applications are driven by the quest
for finding models of binding interactions between proteins and ligands on the
nanosecond scale.

Finally, the mission statement for the project can now be formulated as

Computationally empowering drug designers.

1



1 Introduction

Figure 1.1.1: Word cloud of all answers given to the user survey (N = 8)[9].

1.2 Modelling Interactions

As interaction was the most prominent word from the user survey (with counting synonyms
and closely related words such as pharmacophores, binding, dynophore, stability). The
interactions between a protein and a ligand are by definition of quantum chemical nature.
On the contrary, however, a MD simulation is usually not considered to be able to describe
quantum chemical features of (weak) chemical bonds. As outlined in 1.7.3, interactions
between a biomolecule and a ligand are typically deducted from the type, distances, and
angles of the respective interaction partners. This is of course part of the overall Schrödinger
equation of the system. However, certain features of the Schrödinger equation necessary to
describe the quantum mechanical nature of the systems are missing in the calculation and
the e�ects are at far most observed indirectly, e.g., through the Lennard-Jones and Coulomb
potentials used in force fields to describe non-covalent interactions. However, even though
the system is not described quantum-mechanically, the mathematical concepts behind the
finding CV are strikingly similar to the wave mechanics used in quantum chemistry[10].

From the user survey analysed in Figure 1.1.1, it is evident that the need for simplifying
the analysis of ligand binding modes is something the community wants and lacks su�-
cient tools to do so. To reduce the complexity of the model, searching for the CV of the
system on top of the dynophore analysis is a promising route. Firstly, dynophores are
the dynamical interaction patterns between two parts of the protein-ligand supramolecular

2



1.2 Modelling Interactions

complex. And secondly, starting from the dynophore analysis essentially eliminates the
parts featurisation and dimensionality reduction from the software pattern introduced by
MSMBuilder [11].

Therefore, this work aims to design a prototype software that enables the drug designer
to understand dynamical interactions of supramolecular complexes relevant to drug design
via the Markovian analysis of molecular simulations on the ns scale by using a dynophore
as the featurised input. The prototype software should then be able to extract qualita-
tive dynamical knowledge and patterns of supramolecular protein-ligand complexes. The
software is built on the assumption that the extraction of CV via hidden Markov mod-
elling of dynophores gives meaningful and interpretable results for the drug design commu-
nity. Therefore, the present work aims to verify the theory around the CV extracted by
HMM[10,12–14].

Moreover, together with drug designers, the top three of the most important tasks for the
drug designer were identified as:

1. De novo drug design

2. Theoretical validation of experimental ligand activities in quantitative and qualtita-
tive manner

3. Understanding resistance mechanism of known pathogens

Thus, the newly developed software should support the drug designer in at least one of
the aforementioned tasks. The performance against these key activities shall form as the
predominant metric of success during the project.

In the subsequent section, the necessary concepts used to design the software dylightful
able to use dynamic modelling to describe binding interactions between biomolecules and
ligands as supramolecular complexes in the context of computer aided drug design (CADD)
are introduced. The part Methods focuses on the project-management, software engineer-
ing, test system selection and simulation techniques used to design the software package
dylightful. Each test system is introduced sharply and set in context to their purpose on
testing the software package dylightful. The part Results focuses on the performance of the
software dylightful against the test systems HCV NS3/4A complexed with vaniprevir, zika
virus (ZIKV) complexed with a de novo ligand designed by S. Pach et al.[4] and CDK2 two
systems complexed with di�erent ligands.
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1 Introduction

1.3 Markov Models

1.3.1 Markov Property

A sequence of random variables {xt : t œ N} is a discrete-time Markov Chain (MC) if it
satisfies the Markov property

P (xt+1|xt, . . . , x0) = P (xt+1|xt) (1.3.1)

Therefore, if the Markov property is satisfied, the random variable xt at the time t depends
solely on the random variable at the previous time–step xt≠1. The set of all possible random
variables (states) is called state space E. The cardinality of the state space is denoted as
M . The time dependence of the random variables {xt} can be formalized as a directed
graph.

x1 x2 xt≠1 xt xt+1

Figure 1.3.1: Visualization of a Markov chain of first order as a directed graph.

As MD simulations are done with a propagator that uses numerical integration techniques
to integrate Newtons equations of motion, any given MD simulation has to be dependent
of previous time step(s). The most common and by the drug design community most
frequently applied integrator is the leap frog integration scheme. The integration scheme
is of second order, and thus demanding the strict Markov property. Therefore, resulting
simulations are Markov chains of first order.

1.3.2 Terminology

The sequence of all observations is called the observation sequence o of length L. The
probability of transitioning from a certain state xt = i to another state xt+1 = j is given
by

P (xn+1 = j|xn = i) (1.3.2)

4



1.3 Markov Models

If the transition probability is independent of n, the Markov chain is called homogeneous.
The homogeneous Markov chain is then given by

“ij(t) = P (xn+1 = j|xn = i) (1.3.3)

where “ij(t) denotes the matrix element for the transition of state xt = i to state xt = j.
Finite space Markov chains satisfy the Champman-Kolmogorov equations. The Champman-
Kolmogorov equation describes the probability of for being at state j after t + u steps
starting from state k

P (xn+1 = j|x0 = k) =
ÿ

zœE

P (xn+1 = j|xm = z)P (xm = z|x0 = k) (1.3.4)

To prove the equation one The Champman-Kolmogorov equation can be written in the
short form as follows

�(t + u) = �(t)�(u) (1.3.5)

Thus, the transition probability matrix at the time t is given from the transition probability
matrix �(1) as

�(t) = �(1)t (1.3.6)

The transition state matrix � can also be vizualized as a directed graph (Figure 1.3.2).

Sometimes, the unconditional probabilities of observing a certain state at time t, P (xt = i)
is of interest. The probabilities can be summarized as a vector

u(t) = (P (xt = 1) . . . P (xt = M)) (1.3.7)

In some cases, the initial distribution u(1) is denoted as fi. In order to calculate the
distribution at t + 1, u(t + 1) on may postmultiply u(t) with �

u(t + 1) = u(t)� (1.3.8)

5



1 Introduction

1 2

3

Figure 1.3.2: Transition state matrix of three di�erent states visualized as a directed graph.

If

u(t) = u(t)� (1.3.9)

and

u(t + 1) = u(t)1Õ (1.3.10)

then u(t) is called the stationary distribution ”. A markov chain (MC) is called irreducible
if it is homogenous, discrete in time, and has a finite state space. An irreducible MC has
a unique, strictly positive stationary distribution. If the MC is irreducible and aperiodic
then a unique limiting distribution exists. The limiting distribution is then equal to the
stationary distribution.

1.3.3 Higher Order Markov Chains

There are cases, wich require a weakened Markov property because the studied data does
not satisfy the stringent Markov property. In such cases a model might be constructed for
some l Ø 2

P (xt|xt≠1, . . . , x0) = P (xt|xt≠1 . . . xt≠l) (1.3.11)

6



1.4 Hidden Markov Models

The Markov chain is said to be of order l. The fundamental properties of Markov chains
of first order can be applied to Markov chains of higher order. The state space is then of
cardinality M l. Thus, no special theories must be derived.

1.4 Hidden Markov Models

In contrast to a simple Markov Model, in a Hidden Markov Model (HMM) we do not
observe the states directly or fully. Therefore, also data that represents only part of the
studied time series can be used for HMM modelling. Unlike in plain Markov models, in
HMMs the states are rather the underlying cause for the observations. The states are
thus calles hidden states. To formalize the theory, let L be the length of the observation
sequence, o, with V = {0, 1 . . . , M ≠ 1} denoting the set of distinct observations of length
N . The associated probability matrix is called emission matrix E. Furthermore, there
are M hidden states z, with Z denoting the set of distinct hidden states. The associated
transition probability matrix is again referred to as, � and the initial state distribution is
called fi.

1.4.1 Problems of an HMM

Therefore, HMMs are associated with three di�erent questions, each in need for di�erent
problem-solving techniques

• Evaluation Problem

• Decoding Problem

• Learning Problem

The evaluation problem asks for a given Model Y and observation sequence o, how do
we e�ciently compute the probability P (o|Y ) of observing the sequence? The decoding
problem is about finding for a given observation sequence o the best sequence of hidden
states z. The learning problem is about how to e�ciently compute the model parameters
given the observation sequence o. Therefore, we are trying to maximize P (o|Y ).

1.4.2 Forward–Backward Algorithm

The forward–backward algorithm solves the evaluation problem. The algorithm needs to
compute the forward parameter –(t) and the backward parameter —(t).
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1 Introduction

Given an observation sequence o at time t consider the probability Po,t of observing that
sequence given an HMM Y . The HMM is a function of M , ”, �, and E, such that Y(M , ”,
�, E). Po,t may then be calculated as

Po,t = fiP (x1)�P (x2) . . . P (xt)1Õ (1.4.1)

For a proof, see Zucchini et al.[15]. To derive the Forward algorithm, we calculate at for
t = 1, 2 . . . t as follows,

–t = ”P (x1)
tŸ

i=2
�P (xi) (1.4.2)

The forward probabilities are joint probabilities for all time steps at the time t and the
states z œ Z.

at(z) = Pr(X(t) = x(t), Zt = z) (1.4.3)

For the backwards probabilities —t at times s = 1, 2 . . . t follows therefore in a similar
manner

—Õ
t =

Q

a
tŸ

i=s+1
�P (xi)

R

b 1
Õ (1.4.4)

As opposed to the forward probability at(z), —t(z) is a conditional probability because —t(z)
identifies the probability of observing the prefix xi . . . xt given that the MC is in state z at
time t = i.

—i(z) = P (Xi+1 = xi+1, Xi+2 = xi+2, . . . , xt = xt|Zi = z) (1.4.5)

—i(z) = P (ot|Zi = z) (1.4.6)

Therefore, bÕ
i can be written as

—Õ
i = �P (xi+1)—Õ

t+1 (1.4.7)

Now, given the forward probabilities ai and —i, the procedure for calculating the probabil-
ities P (X(t) = x(t), Zt = z) follows immediately

–i—
Õ
i = P (X(t) = o

(t)) = L ’i (1.4.8)

8



1.4 Hidden Markov Models

With Lt denoting the likelihood of observing o
(t). Note, however, that Lt might also be

computed via

Lt = –t1
Õ (1.4.9)

The algorithm introduced in 1.4.9 would only need a single pass and the forward algo-
rithm.

1.4.3 Viterbi Algorithm

The Viterbi algorithm solves the decoding problem. The Viterbi algorithm asks for the
maximum posteriori estimate for the most likely sequence of hidden states z, called Viterbi
path. Thus, the Viterbi algorithm aims to find

argmaxo = P (z|o) (1.4.10)

The probability P (z|o) denotes the probability of the state sequence z given the observa-
tions o. The Viterbi algorithm makes use of dynamical programming and makes use of
log probabilities to avoid numerical instability of multiplications with regard to over- and
underflows. The Viterbi uses the HMM as an input. Thus, the Viterbi algorithm needs the
emission probalilities, transition probabilites, and the initial probabilites as an input.

1.4.4 Baum–Welch algorithm

The Baum-Welch algorithm (BWA) algorithm solves the learning problem. The BWA algo-
rithm belongs to the class of expectation–maximization (EM) algorithms. The expectation
maximization (EM) algorithm is an iterative method for performing maximum likelihood
estimations when part of the data is missing. The EM algorithm makes use of the assump-
tion that the complete-data log-likelihood (CDLL) may be straightforward to maximize,
even if the likelihood of the observed data is not possible to compute. The complete-data
log-likelihood (CDLL) refers to the log-likelihood of all parameters of interest. Therefore,
the CDLL refers to non-observed states of the HMM.

The BWA consists of two major steps. After initialization of the parameters of interest,
the BWA performs the following steps

• E step: Computing of the conditional expectations of the missing data that appear

9
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in the CDLL

• M step: Maximize CDLL regarding conditional expectations of the parameters of
interest

Therefore, the BWA combines the Forward-Backward–Algorithm and the Viterbi algo-
rithm. According to modern implementations, the BWA algorithm scales exponentially
with the number of hidden states[16].

1.5 Markov–Chain–Monte–Carlo

To solve the EM problem more e�ciently, and numerically more stable, one might apply
markov Chain Monte Carlo (MCMC) methods. The MCMC relies on Monte Carlo methods
to solve the EM problem and is thus more of statistical nature. However, in contrast to the
BWA, the MCMC method relies on su�cient random sampling methods. An algorithm
that learns the transition probability distribution (matrix) � where n denotes the steps
taken by the algorithm

lim
næŒ

fi = � (1.5.1)

is thus at the heart of MCMC methods.

1.5.1 Metropolis–Hastings algorithm

One popular algorithm to learn di�erent probability distributions is the Metropolis–Hastings
algorithm[17]. The Metropolis–Hastings algorithm is based on two assumptions:

1. There exists a stationary distribution

2. The stationary distribution is unique (ergodicity of the Markov chain)

The algorithm needs a sampling distribution g that could be the normal distribution and
an estimate of the targeted probability distribution �. The sample distribution g is often
called proposal distribution. The algorithm works best if � ¥ g, such that the shapes of
both distributions are similar. An example for similar shapes could be that both, � and g

are normal distributions, but the normalizing constant for � is not known. The algorithm
is then divided into two parts

1. Initialization
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1.5 Markov–Chain–Monte–Carlo

2. Iteration

During the initialization, the initial value(s) are picked, e.g., for Markov modelling it could
be from the initial probability distribution. In Markov modelling, we would pick an initial
state and thus subsequently, the variables of interest are referred to as the states.

During the iteration procedure, first a new candidate xt is picked from the sampling dis-
tribution g. Then subsequently, the acceptance parameter – is calculated from the target
and the proposal distribution given the most sampled value xn as follows

– = a1a2 (1.5.2)

Where xÕ is the most recent sampled value an a1 is given as

a1 = �(xÕ)
�(xt)

(1.5.3)

On the contrary, a2 is given as

a2 = g(xt|xÕ)
g(xÕ|xt)

(1.5.4)

The new state is then chosen according to the user-defined acceptance criteria:

1. If – >= 1

xn+1 = xÕ (1.5.5)

2. Else xn+1 is sampled from a uniform distribution with the probabilities

xn+1 =

Y
_]

_[

xÕ, –

xn, 1 ≠ –
(1.5.6)

The sampling is Markovian, as the acceptance criterion is based on the previous sample
xn. The Markov criterion holds for many derived MC, too.
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1.6 Markov State Models

The term markov state model (MSM) is used frequently in the MD community to de-
scribe the Markov analysis of MD trajectories. Thus, MSM are applied to analyse time
series of dynamical systems. For example, in the analysis of peptide unbinding from the
major histocompatibility complexes (MHC) complex, MSM models are applied. Another
approach would utilize coarse-grained models, which are a multiscale simulation approach.
The advantage of using MSM modelling is to provide for an atomistic simulation picture.
The protocol included cutting-o� the MHC complex to 190 residues, Langevin integration,
increasing the hydrogen masses to 4 atomic mass units, simulating at a time step of 4 fs,
and equilibrating the system for a time of 500 ns. Therefore, to deduct relevant states
during the unbinding process of the peptide, many simplifications are derived to be able to
perform enough molecular simulation to have enough samples to calculate the MSM model.
The need of su�cient sampling is also true for other systems. Moreover, the example shows
that the trajectory is not important, but rather the su�cient sampling of relevant states.
Thus, MC or hybrid methods should be the preferred modelling for MSM analysis.

1.6.1 Umbrella sampling

A common technique to solve the simulation time problem for MD simulations, is to use
advanced sampling techniques. The most common one is umbrella sampling (US). The
method was first described by G. M. Torrie and J.P Valleau[18] and is based on Metropolis[17]

simulations. The system is not sampled equally, but rather energies important to the
properties of the system are favoured during the MC sampling. For example, in the original
publication, the authors evaluate the free energy di�erence as follows

A

kT
≠ A0

kT
= ≠ ln

⁄
f0(�Uú) exp(≠�Uú)d�Uú (1.6.1)

To evaluate the integral it is necessary to introduce a MC with the limiting distribution of
a configuration qÕN is calculated according to

�(qÕn) =
w(qÕN) exp

1
≠U0(qÕN )

kT0

2

w(qÕN) exp
1
≠U0(qÕN )

kT0

2 (1.6.2)

The weighting function w favours only the most relevant configurations for evaluating the
integral in equation 1.6.1.
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1.6.2 Time Independent Component Analysis

The time independent component analysis (TICA) refers to a method of dimensionality
reduction in statistical modelling of time series. TICA is similar to principal component
analysis (PCA). PCA focuses on finding the most significant linear combination of the input
parameters. However, in contrast to PCA, TICA searches high autocorrelation features in
the input degrees of freedom. If applied to a simulation, TICA thus finds the eigenvalues
of the applied propagator. TICA may be stacked with clustering algorithms such as the
kMeans algorithm to construct an MSM[19,20]. Thus, the aim is to learn or find the slow
collective variables of the dynamical system. Yet, in practice, according to Wehmeyer et
al. the input space has to be featurised[14]. Therefore, proper features have to be defined
by the user, e.g., atom distances, or torsion angles between residues of high interest. As
for the dynamic analysis of interaction patterns in supramolecular complexes, the natural
choice for the featurised input, is to choose a time resolved interaction pattern parsed in
bit vectors.

1.6.3 Time Lagged Autoencoder

In contrast to TICA, the time lagged autoencoder (TAE) learns the hidden feature space
according to the classical encoder-decoder pattern known from artificial intelligence. The
encoder-decoder pattern aims to perform non-linear PCA and is, therefore, termed as non
linear pricipal component analysis (NLPCA). The NLPCA method makes use of artificial
neural networks with three hidden layers. The central hidden layer is the so-called bottleneck
layer. By training the neural network to first encode, and then decode the provided data
through the bottleneck layer, it is assumed that the bottleneck layer learns the hidden
compact representation of the provided data[21]. The encoder is usually optimized with
respect to a linear regression goal[22]. Applied to time series in general, or MD simulations
in particular, such an encoder-decoder pattern is known as TAE[14]. Therefore, TAE is
doing non–linear variational principle. Moreover, by training a TAE one aims to find the
CV of the system without having to think about proper input features to perform NLPCA.
The approach of obtaining the CVs via HMM is essentially similar to the realization of
the variational principle of observables[12]. To prove the equivalence of TAE and doing
variational principle, it was essentially hypothesized by Wehmeyer et al. that TAE is
equivalent to non-linear variational principle[14]. It was shown by Wehmeyer at al [14] TAE
is finding the eigenvalues of the Hamilton operator H of the dynamic system through the
observables o. As TAE can find the hidden representation of the time-series for non–linear
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cases, too, it must by analogy perform non-linear variational principle. Still, Wehmeyer et
al. did not provide any proof[14]. According to Clementi et al. in the linear variational
principle, a CV is defined as

Âi =
ÿ

j

bij‰j(r) (1.6.3)

Whereas Âi denotes the eigenfunctions of the Transfer operator T of the system which
are equivalent to the CV and the time-independent Hamilton operator[12]. Moreover, bij

denotes the coe�cient of the linear combination of input parameters, ‰j(r). Let G be the
operator of passing input through an arbitrary neural network layer. If TAE was doing
linear variational principle, then for Ga denoting a single neuron it must always be true
that

Ga(b1‰1 + b2‰2) = b1GaÂ1 + b2GaÂ2 (1.6.4)

However, as Ga is using the RelU activation function, a simple example demonstrates that
Ga must be a non-linear operator. Consider Â1 = Â2 = 1, b1 = ≠1 and b2 = 1 such
that

Ga(≠1Â1 + 1Â2) = Ga(≠1) + Ga(1) = 0 + 1 = 1 (1.6.5)

But if GŒ was linear, it would also be true that the following expression is equivalent to
1.6.5, but

Ga(≠3Â1 + 3Â2) = ≠Ga1 + Ga1 = ≠1 + 1 = 0 ”= 1 (1.6.6)

Thus because any layer consists of many Ga that interplay in a linear combination to every
neuron in the next layer, G must be a non–linear operator. ⌅

Now, as the encoding into the hidden space of the HMM respectively TAE could be ex-
pressed as the operator M

M =
Ÿ

i

Gi (1.6.7)

the operator of M encoding into the hidden space must be non–linear, too. However,
the formulation for a featurised observation q

j bij‰j encoded in the hidden space is then
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essentially

M
ÿ

j

bij‰j = MÂi = miÂi (1.6.8)

With mi denoting the probability of obtaining the hidden representation Âi. The fur-
ther argumentation lends from standard quantum mechanical reasoning. Assuming ‰j

are orthogonal, multiplying from left with the complex-conjugate of the wave functions
results

È
ÿ

j

bij‰ij|M|
ÿ

j

bij‰jÍ = ÈÂi|M|ÂiÍ = cimi (1.6.9)

with ci as the inverse normalizing constant. Normalizing and minimizing according to the
variational method known from quantum mechanics results then

Èq
j bij‰j|M| q

j bij‰jÍ
Èq

j bij‰j|
q

j bij‰jÍ
= ÈÂi|M|ÂiÍ

ÈÂi|ÂiÍ
Ø mi,0 (1.6.10)

with mi,0 denoting the true probability of observing the hidden state Âi from the input
q

j bij‰j given the encoding operator M. Thereby, on ‰j, any neural network that is
minimizing weights to find some hidden representation of the input data, and especially
TAE is doing non-linear variational principle. Deep learning and in particular TAE are
thus generalizing TICA. ⌅

As elaborated in section 2.1, Dynophores can provide ‰j that are orthogonal. The hypoth-
esis about the property of TAE performing non–linear variational principle is supported by
the fact that TAE is the abstraction and improvement of the NLPCA algorithm. Through-
out the test systems, the hypothesis shall be further validated on di�erent examples relevant
to the drug design community. Another advantage of TAE against classical EM methods
lies in the algorithmic details of TAE. Because of the general architecture of an autoencoder
shown in Figure 1.6.1, the autoencoder structure shown does at worst scale polynomially
with the number of input features[23] (for the N–2–N case). The polynomial scaling is due to
the necessity of training the neural network. A trained network would be expected to have
a linear time complexity. Moreover, the TAE infrastructure is expected to converge to the
true solution for very large autoencoder sizes[24]. The good time complexity of TAE thus
makes the algorithm more suitable for the analysis of biological systems, as the dynamics
of a protein–ligand complex is expected to be diverse and complicated.
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Figure 1.6.1: General encoder-decoder pattern applied to time series found in TAE architec-
tures

1.7 Computer Aided Drug Design

CADD is a valuable tool in drug development. The major goal of CADD is always to save
time and money during the drug development process. Therefore, the development of novel
concepts and computational methods for reducing the experimental workload during the
drug design. CADD thus decreases the costs and time needed to get a drug to the market.
Moreover, also the quality of a given drug is increased for the individuals consuming the
drugs by applying computational methods during drug development. In the design of small
molecules, CADD di�erentiates into ligand based drug design (LBDD) and structure based
drug design (SBDD). LBDD focuses on methods and knowledge derived from known active
compounds, e.g., structures of antivirals. From a set of known active ligands to a given
target, structure activity relationship (SAR) relations can be derived. SAR are statistical
relations between structures and physicochemical properties that. SAR models help to
design more active compounds given the knowledge extracted from the statistical model.
On the contrary, SBDD focuses on the underlying biological macromolecule and does not
require knowledge of ligands.

1.7.1 Pharmacophores

In CADD the pharmacophore concept is essential. The generation of pharmacophores may
either be from the pool of LBDD, e.g, feature based[25] or from the pool of SBDD methods,
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e.g, docking[26]. The pharmacophore was introduced by Paul Ehrlich in the early 20th cen-
tury. Ehrlich describes the quest for finding novel chemical compounds to fight diseases of
any kind as a quest to learn how to chemically aim (“[...]chemisch zielen lernen”)[27]. Paul
Ehrlich was building his argument on neurotropic or parasitotropic substances, to describe
the property of a chemical compound to specifically target and exhibit its properties at neu-
rons or parasites. A neurotropic substance could for example specifically colour neurons.
Then, after building up his argument, Ehrlich introduces the toxicophores to describe the
chemical features that give rise to toxicity of a chemical compound. By analogy, a pharma-
cophore carries the features that are responsible for the biological activity of a compound.
The IUPAC definition reads “A pharmacophore is the ensemble of steric and electronic
features that is necessary to ensure the optimal supramolecular interactions with a specific
biological target structure and to trigger (or to block) its biological response”[28].

The pharmacophore concept is especially important to virtual screening methods. Virtual
screening on a pharmacophores can give rise to novel structures with di�erent chemical
core structures but similar biological activities. The e�ect is known as “sca�old hopping”,
and was introduced in 1999 by Schneider et al.[29] The term explains the phenomenon that
most biological active compounds exhibit their activity mostly through attached functional
groups rather than their core sca�old. The analysis of the sca�olds and the computational
quest to perform sca�old “hoping, leaping, or crawling” as termed by Bajorath et al. can
give rise to novel structures and is a powerful tool in CADD[30].

In Figure 1.7.1 a pharmacophore of the ZIKVProt is shown with the corresponding ligand
that was used to generate the pharmacophore during a MD simulation[4]. The yellow blobs
correspond to hydrophobic interactions, the red blob with the red arrows to a hydrogen
acceptor and the blue coordination spheres show a positive ionizable area.

To make predictive use of pharmacophores, recent work from Kohlbacher et al.[31] and
Rahman et al.[32] shows that quantitative structure activity relationship (QSAR) modelling
on pharmacophores is a useful tool in CADD.

1.7.2 Data structure

The data structure of pharmacophores from LigandScout 4.4 is typically saved in the PM-
L/PMZ format. The PML/PMZ format is containing information about the ligand inter-
actions with the biomolecule. The PML/PMZ file format is a derivation from the XML
file format, fitted for the chemoinformatic workloads experienced in the CADD field. Each
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Figure 1.7.1: Pharmacophore of the ZIKVProt using LigandScout.

feature is described by the interacting atoms of the ligand, as well as the interaction type.
The PML/PMZ file format is predominantly used in the LigandScout software[33], but is
easy to be parsed because of its derivation from the XML file format.

1.7.3 Dynophores

Dynophores are generated via the LigandScout application programming interface (API)[26]

by considering an MD simulation as an input and performing the pharmacophore analysis
on each frame. Thus, over the simulation, an interaction pattern is created. Therefore,
the shortcoming of pharmacophores only observing a single time point or a static state is
overcome by including the time domain and dynophores can thus give a more complete
picture of the interaction in supramolecular protein–ligand complexes. The data structure
of the dynophore is on the abstract level similar to the data structure of a pharmacophore.
However, the data structure of the dynophore contains more detailed information about
the features of the pharmacophore that make up the dynamic interaction pattern. The
important data features for the interaction analysis performed by dylightful are the inter-
action partners termed envpartners, the frame indices (time points in the simulation), and
the respective superfeatures. The software design of the dynophore workflow is shown in
Figure 1.7.2. The Dynophore software first generates pharmacophores for each time frame
after reading in the ligand definition and the MD-trajectory. The output is then stored in
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a .json and a .pml file. The visualisation is done by the DynophoreApp using the generated
output files.

Figure 1.7.2: Software pattern of the dynophore workflow[2].

The dynophore is then visualized as a 3D-histogram inside the binding site. The dynophore
generated from the ZIKVProt simulated with the ligand 427_1

[4] is shown in Figure 1.7.3

The generated dynophore shown in Figure 1.7.3 depicts that the protein–ligand complex
changed conformations during the simulation as the point cloud is concentrated across dif-
ferent regions in the euclidean space, but the point clouds are not all near the ligand.

As TAE requires featurised inputs to make extraction of useful CVs[14], time resolved
dynophores could o�er a valuable featurisation as the input is:

1. Focusing on the intramolecular interaction

2. Can be represented as orthogonal bit vectors that are necessary for TAE to work
optimally (compare 1.6.3

Therefore, Dynophores are used as the featurised inputs for the further work.
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Figure 1.7.3: Dynophore of the ZIKVProt using the Dynophore software[2].
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2 Methods

2.1 Software Engineering

As outlined in section 1.1, the CVs are most likely hidden from the simulation input,
applying HMMs instead of plain Markov models to uncover the eigenfunctions of the system
is the better choice. As outlined in 1.6.3 finding the collective variables is essentially the
same as learning a hidden representation of smaller dimension with TAE. On the contrary,
the eigenfunctions may work on di�erent timescales and therefore, the Markov property
is violated[12]. Thus, instead of classical HMM modelling, TAE is used. The choice for
using TAE is further motivated by the equivalence of TICA and HMM in suitable cases[13].
Moreover, it was shown that TAE and TICA are equivalent for the linear case[14]. Finally,
it was shown in 1.6.3, that TAE is essentially doing non-linear variational principle on
orthogonal featurised input that is provided by Dynophores.

To make the output usable for subsequent virtual screening experiments, regression, and
classification, constructing a Markov graph was identified as a usable data output from
the software. Alongside the Markov graph, the software produces plots visualizing the
interaction analysis.

2.1.1 Software Design

From the user survey (compare section 1.1) the goal of designing new methods for CADD is
to make the elucidation of the interaction (binding modes) of a given protein-ligand complex
easier. Further, as shown with Dynophores[2], the interactions between ligands and proteins
in supramolecular complexes are more than single snapshots but are only valid throughout
a time series. Thus, any new tool has to achieve the synthesis of a dynamic interaction
perspective within the whole protein–ligand complex and CADD. To achieve the goal, the
software shown in Figure 2.1.1 was designed.

In the software workflow, the central part is extracting interactions from all perspectives
of the interaction partners. There is thus the perspective from the ligand, the mixed
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Figure 2.1.1: Software design based on the user survey in Figure 1.1.1.
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perspective, and the perspective from the biomolecule. All can be analysed to gain di�erent
levels of understanding from di�erent aspects of the interaction, whereas the only complete
picture would come from the mixed perspective. The separation into the three perspectives
of the ligand, the protein, and the complex are inspired by the LigandScout software[26,33].
Analysing the mixed picture is a necessity directly derived from the fact that in reality
there is no system at rest and each interaction of the protein-ligand complex is on the same
timescale of their intramolecular vibrations. Moreover, because of the mixed interaction
terms in the force fields used in MD simulations demand the mixed picture for completeness,
too.

The new software design thus profoundly builds on the concepts introduced by Dynophores.
Therefore, choosing a dynophore as an input seems natural, but is not mandatory. After
extracting the corresponding interactions, one can perform the reprojection into the Hilbert
space of the CV via TAE and cluster the obtained CVs to construct a Markov model. The
aforementioned pipeline is a standard procedure for producing MSM and is described, for
example, in the documentation of MSMBuilder [11]. However, the software pattern di�ers
from MSMBuilder, as the novel pipeline does not branch out HMM analyses from the
workflow but rather uses the HMM modelling via TAE as the central part of the workflow.
Moreover, di�erent perspectives for extracting the CV are considered as useful but not as
mandatory for automatizing the feature extraction. Automatizing the feature extraction
was the main purpose of the study behind the usability of TAE by Wehmeyer et al.[14] The
other parts of the pipeline are indeed equal to MSMBuilder [11].

Furthermore, by abstracting almost all algorithmic work up to selecting the number of
hidden states that are obtained from the analysis, the user is given algorithmic control
without having to think about writing algorithms and do machine learning and statisti-
cal modelling themselves. Therefore, the software abstracts the package deeptime further
because deeptime aims to make the time series analysis for machine learning engineers
easier[34]. To systematically build reliable tools for the drug design community, project
management techniques from the Lean movement were applied. These included customer
development and feedback loops throughout the whole process of developing the software,
not only through surveys but also through close contact with the users, test-driven devel-
opment, work-as-it-progresses kanbans, and continuous integration[35].
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2.1.2 Software Implementation

The software was developed in pure Python with the aim of abstracting the process shown
in Figure 2.1.1, which is already a simplification but at the same time, also a derivation
of the process used in MSMBuilder [11]. Therefore, the patterns shown in Figure 2.1.2
were derived The abstracted software pattern was then implemented for protein–ligand

Figure 2.1.2: Abstracted software pattern derived from the pattern shown in Figure 2.1.1.

interactions as shown in Figure Figure 2.1.3 and implemented as Python modules in the

Figure 2.1.3: Implementation of the software pattern shown in Figure Figure 2.1.2 from the
patterns shown in Figure 2.1.1.
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dylightful package. The package is hosted on GitHub and the coverage according to the
Python package code-cov[36] is 100 %. The package contains the modules

1. parser.py

2. msm.py

3. discretizer.py

4. utilities.py

5. bar_plot.py

6. mdanalysis.py

7. metrics.py

8. postprocess.py

9. preanalysis.py

The package is fully extendable, and the object patterns and the implemented CI-pipeline
allows for rapid prototyping of new algorithms. The interface is easy to use and can be
easily included into other packages or workflows. The code and especially the modules are
documented using the Python package sphinx and the documention is hosted on https:
//dylightful.readthedocs.io/en/latest/. The documentation is corroborated with
examples provided as Jupyter notebooks. Jupyter notebooks were chosen as the main user
interface because all users participated in the interviews and feedback loops were familiar
and regular users of Jupyter notebooks. The dependencies of the package are

1. deeptime[34]

2. MDAnalysis[37–39]

3. scikit-learn[40,41]

4. numpy[42,43]

5. pandas[44,45]

Furthermore, even though not necessary for the build, during the development, hmm-
learn[46] was used.
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2.1.3 Test Systems

Alongside with the drug designers, the three most important problems for the drug design
community were identified as

1. De novo drug design

2. Theoretical validation of experimental ligand activities in quantitative and qualitative
manner

3. Resistance mechanism in pathogens

To test and enhance the performance of dylightful on these key tasks, the following test
systems were chosen for each task respectively

1. ZIKVProt

2. CDK2

3. HCV NS3/4A protease

For the software package dylightful it is thus mandatory to be able to support the drug
designer in at least one of these issues. Thus, to test the main functionalities and capa-
bilities of the software package, three test systems were chosen. The first test consists of
a simulation of the ZIKVProt simulated with the ligand 427_1 shown in Scheme 2.1.1.
The second test system investigates three di�erent ligands complexed with human CDK2.
The third test is about mutations of HCV NS3/4A protease that was mutated at specific
residues.

2.1.4 Zika Virus Protease

Scheme 2.1.1: Ligand 427_1 for the ZIKVProt used in the MD simulation[4].

The aim of the test of dylightful with ZIKVProt complexed with compound 1, is to see if
the implemented software pattern shown in Figure 2.1.3 reproduces the visual inspection
of domain experts.
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2.1.5 Cyclin-dependent Kinase 2

Another test-system consists of the cyclin dependent kinase (CDK)2. The CDK2 is a
kinase that has a critical role of the late M-Phase in the cell cycle[47–49]. CDK2 is a
controversial drug target for cancer therapies, and the full mechanism of inhibition is not
known. Moreover, CDKs show high structural similarity upon activation in their binding
pocket and are thus di�cult to target selectively[50]. As shown by Jianzhong Chen et
al. from a dynamic picture, more insights might be derived[51] and better inhibitors can
be designed. The publication shows that the mechanism of inhibition controls the slow
collective variables of the dynamic motion of CDK2[51].

Moreover, it was shown that the more holistic study of CDK2 complexed with Cyclin A can
lead to selective inhibitors[6]. For the test of the dylightful package, the crystal structure
1KE7 of CDK2 cocrystalized with an oxoindol based inhibitor was chosen[5] as a reference
study.

The simulation protocol for the CDK2 system consisted of

1. Structure preparation in MOE[52] with remodelling

2. Structure preparation in Maestro[53]

3. Preparation of the minimal simulation box under physiological conditions with the
TIP4P water model

4. Five replicas in the NPT ensemble for 100 ns using Desmond parametrized with the
OPLS2005 force field[54,55] on Nvidia GTX 2080Ti graphic cards

5. First post-processing step using lab intern scripts to extract .dcd trajectories and
start frames of the di�erent replicas as .pdb

6. General analysis using the Python package mdtraj [56]

7. Dynophore generation using the Dynophores software in the unoficcial version 0.88[2]

The structure was prepared using the MOE[52] and Maestro[53] software packages according
to physiological conditions. To test the dylightful software package against the newest find-
ing of the literature regarding the dynamic mechanism of inhibition[6,51], the structures of
1KE5, and 6GUH were studied. Homology modelling for incomplete structures was done in
MOE[52] using the standard settings from the structure preparation and the loop modeller.
For each missing sequence, the best fit was chosen based on structure similarity and visual
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inspection. However, each sequence was modelled equally for all studied systems. The
crystal structures may have di�ered significantly in around the regions of the not modelled
flexible loops 37-43 and 153–162. To make the simulations somewhat comparable, the influ-
ence of the homology modelling on the residues 37-43 and 153–162 was examined. However,
up to now, a systematic tool to perform a dynamic analysis of the CDK2 system is lacking.
Thus, to further test the capabilities of the software package dylightful, SAR is performed
on the most prominent CV with three di�erent ligands from the crystal structures 1KE7,
1KE5, and 6GUH[6].

Scheme 2.1.2: Inhibitors for di�erent CDK2 systems (from left to right 1KE7, 1KE5,
6GUH).

2.1.6 Hepatitis C Virus Protease

To test, if the behaviour of a system totally di�erent from CDK2 can be analysed using
the dylightful package, the HCV protease N3/4A was chosen as another test system. The
test system HCV N3/4A protease complexed with vaniprevir investigates if the software
package can distinguish patterns introduced by mutating the protein. The structures used
to perform, and the data used to verify the modelling came from a study conducted by
Schi�er et al.[7] and as an application, the software dylightful using the data made available
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2.1 Software Engineering

through the resistance study by Schi�er et al.[7] could give insights on how di�erent muta-
tions a�ect the dynamics of the protein–ligand system. The knowledge about the e�ect of
target mutations on the dynamic protein–ligand interaction might then give insights into
resistance mechanisms of the HCV pathogen.

Scheme 2.1.3: Lewis structure of vaniprevir.

Knowledge about the resistance mechanism of the HCV protease is critical for the devel-
opment of new antivirals as well as the su�cient treatment of infected hosts, as the virus
mutates rapidly[57]. The high frequency of mutations in HCV is due to an error-prone
RNA-polymerase, which additionally lacks proofreading capabilities. Therefore, the ge-
netic variety of HCV in an infected host is increased during the infection[58]. The study
on the atomistic resistance mechanisms by Schi�er et al.[7,8] revealed that firstly, the dy-
namics of the ligand plays an important role for the susceptibility of a mutation to the
ligand activity, and secondly that there are traceable mutations that may interrupt the key
cation–fi–interaction at the R155 residue. According to Schi�er et al.[7], the first mutation,
R155K, inhibits the interaction directly. The second mutation, D168A, disrupts the inter-
action with R155, by shifting the position of R155 for optimal cation–fi–intreraction with
vaniprevir. The A146T mutation shifts the P2 moiety of vaniprevir to the catalytic triad of
the NS3/4A protease. Thus, according to Schi�er et al., all mutations manifest their dis-
ruption of the cation–fi–interaction from vaniprevir at the R155 residue in di�erent ways.
And as expected, from the atomistic analysis[7,8], the activity of vaniprevir gets reduced
significantly. The activities for the di�erent complexes 3SU3, 3SU4, 3SU5, and 3SU6 are
0.75 nm, 554 nm, 2635 nm, and 958 nm, respectively. Yet, from the experimental values,
there are severe di�erences between the mutations. Hence, from running the test with the
dylightful software package, it is expected that the dynamic analysis is entirely di�erent in
some, but at the same time very similar in other features. The MD simulations were run
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in a similar fashion to the CDK2 (2.1.5) and ZIKV system[4] for 100 ns per replica.

(a) 3SU3 (b) 3SU4

(c) 3SU5 (d) 3SU6

Figure 2.1.4: Comparison of the dynophores of 3SU3, 3SU4, and 3SU6 generated with the
Dynophore software[2].

From the histogram shown in Figure 2.1.4, no clear pattern might be derived. The in-
teraction described by the authors is shown in the bottom right between the aromatic
isoindoline moiety and R155 (blueish clouds). In fact, some mutations seem to have a
more pronounced interaction between vaniprevir and the HCV NS3/4A protease than the
wild type and the isoindoline residue. It is evident, however, that spatial distribution of
the interactions are slightly di�erent for each mutation compared to the wild type 3SU3.
Surprisingly, though, the interaction of 3SU3 and 3SU4 seem very similar, even though
the authors claimed the interaction between R155 and the isoindoline moiety would be
completely disrupted[7]. Moreover, the authors hypothesized based on a static picture, the
interaction between vaniprevir and R155 as one of the most significant for activity of the
ligand vaniprevir.
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3.1 Zika virus protease

The results of the test system ZIKVProt are introduced via the workflow of the software
dylightful. After extracting the necessary data out of the dynophore generated by Pach
et al.[4], the TAE is trained. As an example, the reprojected time series and the training,
as well as validation accuracy, are given as plots for the mixed perspective as the mixed
perspective gave the most insightful results. However, the workflow is the same for the
protein and the ligand perspective. The training output for the ZIKVProt system in the
mixed interaction perspective is shown in Figure 3.1.1. The loss against the validation set
is almost equal to the training set and appears to be converged. Thus, the training of the
TAE model is considered to be successful.

Figure 3.1.1: Convergence of the training done with TAE.

In addition, the reprojection of the original trajectory of the ZIKVProt complexed with
the ligand shown in Figure 3.1.2 demonstrates the discretisation of the original trajectory
through TAE.
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Figure 3.1.2: Mixed interaction trajectory transformed with TAE.

Clustering the trajectory with the k-means clustering algorithm gives the elbow plot shown
in Figure 3.1.3. Indicating convergence at six states. To have a reasonable automated
loss function at hand, for five repetitions, the standard deviation was calculated on the
count matrix of the Markov analysis. Then, the mean of each element of the count matrix
was calculated and the relative error. The resulting loss function is shown in Figure 3.1.4.
According to the loss function, the number of states with the lowest variance was chosen
as six Markov states.

Next, the MSM matrices were extracted and are shown in Figure 3.1.5. The MSM matrices
show that there are two predominant and four rare states. All states seem to be stable in
themselves, as the transition probability is the highest on the diagonal for all states.

The Markov states were extracted and the most and second most stable state are shown
in Figure 3.1.6. Furthermore, the di�erent conformation state described by S. Pach et
al.[4] was extracted by the software, too, and is also shown in Figure 3.1.6. The states
show di�erent conformations of the protein. The most stable state based on the absolute
number of occurrences, e.g., is showing a 3-10 helix to the bottom left, which is lacking in
the second most stable state. The rare ligand orientation in the trajectory corresponds to
the state mentioned by authors. The two orientations of the ligand in the binding pocket
separated out by the MSM analysis are hypothesized to explain the higher binding a�nity
of the ligand 1 compared to other ligands[4]. Moreover, the predominant configuration
seems to induce several protein conformations, whereas the rare spatial orientation of the
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3.1 Zika virus protease

Figure 3.1.3: Convergence of the k-means clustering applied to the TAE transformation of
the mixed interaction perspective.

Figure 3.1.4: Convergence of the Markov analysis of ZIKVProt for di�erent number of states.
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(a) Count matrix (b) Transition state matrix

Figure 3.1.5: Markov matrices for the ZIKVProt complexed with 427_1.

ligand 1 is inducing only a single conformation of the protein–ligand–complex.

To see, whether di�erent ligand binding modes are responsible for the stabilization of
the di�erent CVs shown in Figure 3.1.6, dynophores for each state were generated (Fig-
ure 3.1.7). Indeed, the rare conformation mentioned by Pach et al. could be extracted using
the aforementioned workflow. Moreover, the two most prominent CVs show a slightly dif-
ferent Dynophore histograms as well. In contrast to the most stable state, the second most
stable state shows an interaction with ASN152 through the left part of the ligand 1. More-
over, the two most stable states show slightly di�erent spatial orientations of the ligand 1,
too.

3.2 CDK2

As a first step, the evaluation of modelling decisions regarding the 1KE7 supramolecular
complex are evaluated. The original structure was capped at the residues 37-43 and 153-
162. Thus, a homology model was assembled using MOE[52] (compare Section 2.1.5). The
loop shows significant influence on the ligand binding behaviour. In the case where the
loop was not remodelled but the capped structure was simulated, the system shows larger
binding pocket during the course of the simulation. Moreover, the interactions between
the remodelled loops of the residues 37–43 and 153–162 were measured. The height of the
binding pocket may be a measure for the induced-fit initiated by the ligand, and is thus
a measure for the inhibition ability of the ligand. To monitor the binding pocket-size, the
distance between ILE10 and LEU83 was measured. The two di�erent histograms shown in
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(a) Most stable conformation

(b) Second most stable conformation of 1KE5

(c) Rare ligand conformations

Figure 3.1.6: Di�erent Markov states extracted from the MD simulation of the ZIKVProt[4]

showing the two most stable conformations, and the described rare ligand conformation.
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(a) Most stable state (b) Second most stable state

(c) Most stable stat overlaid with the rare lig-
and conformation (d) Rare ligand conformation

Figure 3.1.7: Comparison of the classical Dynophores of compound 1 for the most stable,
second most stable state and the state showing the rare ligand conformation described by S.
Pach et al.[4]
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Figure 3.2.1 clearly demonstrate the big influence of the remodelled loops of the residues
37–43 and 153–162 on the structure of the binding pocket.

(a) Plain structure of 1KE7 (b) Remodelled structure of 1KE7

Figure 3.2.1: Comparison of the plain structure of 1KE7 and the homology model obtained
from MOE[52].

Therefore, the structures of 1KE5 and 6GUH were modelled according to the modelled
structure of 1KE7 such that GLU40 and ARG147 can form hydrogen bonds. In Fig-
ure Figure 3.2.3–Figure 3.2.5, the time-resolved dynophores of the di�erent structures are
shown. The time resolved dynophores di�er significantly, however no real trend can be
derived from these pictures alone.

The time resolved dynophore is shown for both the not remodelled (Figure 3.2.2) and the
remodelled protein (Figure 3.2.2), and one can see di�erences in both dynophores. The
remodelled protein shows a more stable binding of the ligand to protein in the binding
pocket compared to the capped protein.

The histograms of the binding pocket-size for all the three systems 1KE7, 1KE5, and 6GUH
are compared in Figure 3.2.6. For 1KE7, the system seems to be in states where the binding
pocket-size seems to be stabilized around 11 and 15 Å. In 6GUH, the binding pocket seems
to be stabilized at around 11 Å, too. However, for 1KE5, the binding pocket seems to be
predominantly stabilized at 10 Å and below. Therefore, as expected from the activities,
6GUH and 1KE7 are similar, whereas 1KE5 should show di�erent behaviour. Mostly, the
binding pocket-size does not seem to correlate with the ligand activity in a straightforward
manner, but can be related to the ligand activity in the examples studied.

The finding of the di�erent binding pocket sizes during the simulation can be rationalized
with the interaction of the remodelled loops between each other. To compare the di�erent
protein–ligand systems 1KE7, 1KE5, and 6GUH, the number of hydrogen bonds between
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Figure 3.2.2: Time resolved dynophore of the plain 1KE7 structure showing the mixed inter-
action perspective.

Figure 3.2.3: Time resolved dynophore of remodelled 1KE7 showing the mixed interaction
perspective.
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Figure 3.2.4: Time resolved dynophore of remodelled 1KE5 showing the mixed interaction
perspective.

Figure 3.2.5: Time resolved dynophore of remodelled 6GUH showing the mixed interaction
perspective.
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(a) 1KE7 (b) 1KE5 (c) 6GUH

Figure 3.2.6: Histogram of the binding pocket size measured between LEU10 and ILE83
during the course of the simulation for 100 ns.

the remodelled loops were monitored. The histograms presented in Figure 3.2.7 underline
that the ligands have di�erent ability to induce stabilizing protein conformations. Yet,
again, 1KE7 and 6GUH seem to show a similar behaviour.

(a) 1KE7 (b) 1KE5 (c) 6GUH

Figure 3.2.7: Histogram of the number of hydrogen bonds between the remodelled loops
during the course of the simulation.

The di�erent activity can also be seen from the classical dynophore visualization shown
in Figure 3.2.8. The pictures show a clear di�erence in the dynophore patterns and the
structures show di�erent number of interactions. The di�erent dynamic behaviour of the
ligands is thus not only present in the binding pocket, but manifests itself throughout the
whole protein–ligand complex. Moreover, it most likely that the dynamic picture of the
whole protein–ligand complex gives insights into the binding mechanism of di�erent ligands,
as there seem to be di�erent important features of the ligands, that stabilize the binding.
One or more conformations must be responsible for tiny binding pocket sizes (less than
10 Å) and other conformations must be responsible for the stabilization at around (11 Å).
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For example, 6GUH and 1KE7 share similar superfeatures at the tail (ASP145, LYS33)
whereas 1KE7 and 1KE5 share the same interaction pattern on the hinge region (near
LEU83). It is thus likely, that all ligands show a di�erent markophore. Still, 1KE7 and
6GUH should share the same dominant, CV as the histograms of the binding pocket-size
shown in Figure 3.2.6 suggest a similar stabilized conformation.

(a) 1KE7 (b) 1KE5 (c) 6GUH

Figure 3.2.8: Comparison of di�erent the dynophores obtained from the MD simulation of
1KE7, 1KE5, and 6GUH.

To do any qualitative or quantitative SAR based on the analysis, first the robustness of
the simulation is tested by simulating longer and determining the states according to the
method introduced in 3.1. The losses for 100 ns and 200 ns simulations were compared. The
loss functions shown in Figure 3.2.9 demonstrate that the longer simulation time of 200 ns
introduced reduced the overall variance of the analysis. Especially, the 1KE7 structure,
seems to be framed as more complex than derived from the 100 ns simulation.

The 1KE7 structure most likely visited a di�erent conformation. The new conformation
can be seen from the RMSD plot shown in Figure 3.2.10

Next, as a sanity check, the histograms are compared again (Figure 3.2.11). However, the
histograms shown in Figure 3.2.11 show no di�erence to the histograms from the shorter
simulation for 100 ns shown in Figure 3.2.6 visually. Therefore, the in-depth analysis was
needed to uncover the rare conformation seen in Figure 3.2.10.

To make the simulations comparable, the count and transition state matrices were ex-
tracted. The count matrices for the long simulation time of 200 ns for the three di�erent
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(a) 100 ns (b) 200 ns

Figure 3.2.9: Comparison of the loss functions for the Markov state determination for di�er-
ent simulation times.

(a) 100 ns (b) 200 ns

Figure 3.2.10: Comparison of the RMSD trajectory for the 1KE7 structure for di�erent sim-
ulation times.

(a) 1KE7 (b) 1KE5 (c) 6GUH

Figure 3.2.11: Histogram of the binding pocket size measured between LEU10 and ILE83
during the course of the simulation.
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systems 1kE7, 1KE5, and 6GUH are shown in Figure 3.2.12. The count matrices already
give a qualitative measure of the ligand activity.

(a) 1KE7 (b) 1KE5 (c) 6GUH

Figure 3.2.12: Transition probability matrices of the Markov model for the three di�erent
supramolecular complexes 1KE7, 1KE5, 6GUH.

(a) 1KE7 (b) 1KE5 (c) 6GUH

Figure 3.2.13: Count matrices of the Markov model for the three di�erent supramolecular
complexes 1KE7, 1KE5, 6GUH.

The activities for the systems 1KE7[5], 1KE5, and 6GUH[6] are 8.9 nM, 560 nM, and 26
(6) nM[59], respectively. As the experimental error for the activity determination of 6GUH
seems large, and the experiments are from di�erent labs and separated by almost 10 years,
one might consider 1KE7, and 6GUH similarly active, whereas 1KE7 seems to be a little
bit more active. In the plot shown in Figure 3.2.14 an attempt to do QSAR based on
the Markov model is shown. To establish a linear relationship, the diagonal value of the
most prominent state in the count matrix (Figure 3.2.12) were extracted. From the plot
shown in Figure 3.2.14 it is evident that the counts relate to the stability in a non–linear
manner.

Comparing the most prominent conformations for each supramolecular complex 1KE7,
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Figure 3.2.14: Attempt to model QSAR on di�erent CDK2 inhibitors based on the diagonal
of the count matrix obtained from the Markov model.

1KE5, and 6GUH shown in Figure 3.2.15 it becomes evident that slightly di�erent con-
formations of the protein are stabilized by interaction with their respective ligand. When
visually inspecting the most stable CV for each system, it becomes evident that 6GUH
stabilizes a conformation in between the conformations of the most stable CV of 1KE7 and
1KE6. At the top, 6GUH is similar to 1KE7 and at the bottom more similar to 1KE5.
The bottom-left of the protein-ligand complex is wider. The bottom-left is the area of
the protein where cyclin A and cyclin B would form the supramolecular complex. As the
binding site for cyclin A and B is the widest for 1KE5 in the most stable conformation, it
could be an explanation why the experimental inhibition activity of the ligand complexed
with CDK2 in 1KE5 is the lowest, as cyclin A binding is critical to the activity of CDK2[60].
On the contrary, CDK2 binds to the second subunit at the top of the protein, where 6GUH
and 1KE7 are very similar[6]. The analysis aligns with the other studies, emphasizing the
complexity of the ligand interaction that manifests di�erent activities based on the inhi-
bition of CDK2 of di�erent potency depending on the supramolecular complex CDK2 is
bound to (cyclin B, cyclin A or apo structure)[6,51].

3.3 HCV NS3/4A protease

To investigate the contradiction between the hypothesis of the relation of R155 to the ligand
activity of vaniprevir derived from crystal structure experiments[7,8] elaborated in 2.1.6 first
the time resolved dynophores are reviewed similarly to 3.2. The time resolved dynophores
shown in Figure 3.3.1 to Figure 3.3.4 seem to prove the hypothesis from Schi�er et al.[7,20]

in the sense that the interaction between R155 (ARG1155 in the figures) is disrupted for the
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3.3 HCV NS3/4A protease

(a) Most stable conformation of 1KE7

(b) Most stable conformation of 1KE5

(c) Most stable conformation of 6GUH

Figure 3.2.15: Di�erent Markov states extracted from the MD simulation of the CDK2 com-
plexes 1KE7, 1KE5, and 6GUH.
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R155K mutation. Still, the new interaction between the ligand through the superfeatures
9, 12, and 13 are very prominent in the case of the interaction through superfeature 9 and
12 with LYS1155. However, in the mutations D168A A156T that are meant to disrupt the
interaction of R155, the interaction of vaniprevir with R155 is even more pronounced after
introducing the mutations. For 3SU5, interaction with superfeature 3 is seldom, whereas
the interaction via superfeature 11, and 12 is very prominent. For 3SU6, the interaction of
vaniprevir via superfeature 3 is prominent, via superfeature 9 seldom, and via superfeature
12 very prominent.

Figure 3.3.1: Time resolved dynophore of remodelled 3SU3 showing the mixed interaction
perspective.

Apart from the interaction frequency, the number of interactions in 3SU5 and 3SU6 are
di�erent. In 3SU5 and 3SU6 there seem to be more interactions present indicating novel CV
as compared to 3SU4 and 3SU3. Thus, the CV analysis similar to CDK2 was performed.
Firstly, the RMSD of the protein–ligand complex was analysed to see if the trajectories
might give some hints about the large activity di�erence of the four di�erent protein–
ligand complexes. The comparison of the RMSD histograms of the trajectories for the four
supramolecular complexes is shown in .

The di�erent histograms suggest several conclusions. Firstly, the histogram of 3SU4 is
entirely di�erent from all other histograms and suggest that the protein is stabilized in a
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3.3 HCV NS3/4A protease

Figure 3.3.2: Time resolved dynophore of remodelled 3SU4 showing the mixed interaction
perspective.

Figure 3.3.3: Time resolved dynophore of remodelled 3SU5 showing the mixed interaction
perspective.
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Figure 3.3.4: Time resolved dynophore of remodelled 3SU6 showing the mixed interaction
perspective.

certain conformation. This conformation would then according to the histograms shown
in 3.3 be present in all of the other complexes, too (3SU3, 3SU4, 3SU6). However, the
di�erences between 3SU3 and the 3SU5 and 3SU6 are less clear. 3SU5 and 3SU6 show stable
conformations between 2 Å and 4 Å. Whereas, the probabilities of observing di�erent RMSD
values in the interval are di�erent for 3SU5 and 3SU6. Nevertheless, 3SU5 and 3SU6 do
not show a prominent peak between 4 Å and 5 Å. Yet, 3SU5 seems to show conformations
with high probability that occur at RMSD values bigger than 6 Å. Therefore, each of
these systems seems to show according to classical RMSD analysis a di�erent mechanism
of altering the activity of the inhibitor vaniprevir. It remains elusive, however, if the
simulation of the systems are su�cient to explain the activity di�erence.

Next, to see if the Markovian analysis gives further insights, the number of distinct CV
plots for the di�erent complexes are compared. First, five repetitions of the whole workflow
described in 3.2 were performed.

From the loss functions shown in Figure 3.3.6, the states corresponding to the minimal
loss were determined. Yet, the matrices showed comparably high variance when repeating
the workflow five times. Sometimes, the clustering converged to a local minimum. The
high variance can be explained by looking into the reprojections obtained from TAE (Fig-
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3.3 HCV NS3/4A protease

(a) 3SU3 (b) 3SU4

(c) 3SU5 (d) 3SU6

Figure 3.3.5: Comparison of the the histrograms of the RMSD values of the MD trajectories
of 3SU3, 3SU4, 3SU5 and 3SU6.

Figure 3.3.6: Loss for the determination of the number of CV for the supramolecular com-
plexes 3SU3, 3SU4, 3SU5 and 3SU6.
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ure 3.3.7). They do not show a very di�erent picture. In fact, compared to the ZIKVProt

(Figure 3.1.2, the TAE reprojection is quite noisy. Thus, the workflow was repeated with
twice the number of frames but the same simulation time, obtaining a new loss function
shown in Figure 3.3.8. The count obtained count matrices with lower variance are shown
in Figure 3.3.9.

(a) 3SU3 (b) 3SU4

(c) 3SU5 (d) 3SU6

Figure 3.3.7: Comparison of the count matrices from the HMM obtained trough dylightful
for the systems 3SU3, 3SU4, 3SU5 and 3SU6.

Moreover, the ligand seems to stay in the same conformations in the states, such that no
insight might be derived from the pure ligand interaction. It is surprising because the lig-
ands exhibit di�erent activities according to the enzyme inhibition assays conducted by the
authors[7,8]. Still, the authors only monitored the enzyme cleavage activity. According to
the analysis of the data obtained from 100 ns MD simulations done with dylightful, the dif-
ferent supramolecular complexes show slightly di�erent induced dynamical configurations.
Thus, according to the count matrices shown in Figure 3.3.9 one could imagine that the
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3.3 HCV NS3/4A protease

Figure 3.3.8: Loss for the determination of the number of CV for the supramolecular com-
plexes 3SU3, 3SU4, 3SU5 and 3SU6 with approximately 10,000 frames.

(a) 3SU3 (b) 3SU4

(c) 3SU5 (d) 3SU6

Figure 3.3.9: Comparison of the count matrices from the HMM of approximately 10,000
frames obtained trough dylightful for the systems 3SU3, 3SU4, 3SU5 and 3SU6 .
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mutation may not restrict ligand binding to the NS3/4A protease, but in turn the protease
may change its conformation due to the mutation such that it can exhibit cleavage activity
even though the protease was bound to the inhibitor vaniprevir. Therefore, the competi-
tive binding might be lowered as di�erent conformations of the system were induced. An
experimental study using time-resolved Förster resonance energy transfer microscopy could
give further insights. To verify the aforementioned hypothesis, QSAR based on the row
sums of the count matrices in Figure 3.3.9 was performed resulting in an almost linear fit,
when omitting 3SU4 as an outlier (Figure 3.3.10). The di�erent behaviour of 3SU4 can’t
be explained in a straightforward manner with the linear modelling done. The framing of
3SU4 as an outlier points in the direction of a di�erent mechanism of modifying the activity
of vaniprevir as compared to 3SU3, 3SU5, and 3SU6. However, the outlying behaviour of
3SU4 could also be due to experimental uncertainty. The reason of the di�erent behaviour
of 3SU4 compared to the other complexes can’t be investigated further in this study and
would require additional experimental studies.

(a) All structures (b) Omitted 3SU4

Figure 3.3.10: Comparison of QSAR on the HCV NS3/4A protease with and without outlier
based on row sums of the count matrix obtained from the Markov model based on approxi-
mately 10,000 frames and 100 ns simulation time.
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4.1 Application

Firstly, it was shown that the drug design community desperately needs new software
tools, to enhance their abilities. The lean method proved as a valuable method throughout
the development of dylightful. Mostly, the understanding of the drug design community
regarding the dynamic behaviours of their targets was limited due to the lack of su�cient
models to explain phenomenons they observe. Even though simulations are becoming
more powerful, the drug design community is stuck to derive models and make decisions
based on a static mindeset separating ligands and proteins (compare SBDD vs. LBDD)
when judging protein–ligand interactions. The dylightful software makes use of the dynamic
pharmacophores introduced by D. Sydow [2] and enhances the theory behind Dynophores. In
each test-system, the software gave an unique understanding not described in the literature
of each protein–ligand complexes studied. It is likely that the software dylightful will do so
in other supramolecular complexes as well.

Additionally, it was demonstrated that by projecting the input to the hidden space of the
trained TAE model, the Viterbi path of the hidden CV is obtained and that the method
utilizing TAE finds eigenfunctions of the Hamiltonian of the systems doing non–linear
variational principle. The analysis o�ers a valuable tool for judging modelling decisions
in the context of protein–ligand interactions. Decisions with a profound e�ect on the
system are di�erentiated immediately and with the understanding of the system as a whole
rationalized easily. Moreover, su�cient sampling rates and simulation times for a given
system can be judged based on the modelling done by dylightful.

Besides, the ZIKVProt test system demonstrated that without observing the conformational
changes of a protein–ligand complex directly, it is possible to obtain the di�erent confor-
mations as CVs through the HMM modelling via TAE from interaction patterns derived
from dynophores.

Testing the dylightful software package on the CDK2 structures 1KE5, 1KE7, and 6GUH
could not derive a linear quantitative SAR model, however qualitative understanding of
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the inhibition activities of di�erent ligands against CDK2 could be derived. The findings
align well with the published literature[5,6,51].

For the HCV system, the software gave new insights on the mechanism of inhibition. The
main insight was, that the inhibition mechanism was again only rationalized within a dy-
namic induced fit picture of the whole supramolecular complex. Thus, the test shows that
some understanding of the system could be gained that is inaccessible with methods ap-
plying static models. However, to derive more profound insights, there must be more data
provided such that the algorithms can discretize the trajectories with higher confidence.
Still, a new method of understanding resistance mechanism is the HCV NS3/4A quanti-
tatively was developed using the dylightful software package. Therefore, dylightful takes
the idea of structure-based ensemble-QSAR[1] methods further to an entirely dynamic SAR
method.

Because the test systems were chosen according to the key activities of the drug design com-
munity, and it can be concluded that dylightful empowers drug designers by making

1. De novo drug design

2. Deriving insights on activity mechanism from biological assays

3. Understanding resistance mechanisms of known pathogens

easier.

4.2 Limitations

As shown, the HMM modelling via TAE is good for qualitative analysis, but quantitative
SAR is di�cult in a low data regime. Thus, MD analysis of larger datasets is necessary.
However, the analysis time would then also rise. Likewise, it is not clear, how more frames
and bigger sample sizes correlate to the TAE analysis and the behaviour of the software
package must be investigated further in subsequent more general research. Again, it re-
mains elusive whether quantitative SAR is at all possible, or if the tool has only strengths as
a purely qualitative tool. As each supramolecular system is di�erent, the number of states
representing the eigenvalues of the Hamiltonian of the simulated system is not necessarily
the same throughout a series of ligands. Moreover, the number of determined states does
not necessarily correlate with the activity in a straightforward or naive manner.

In the current development stage, the tool is in a prototype stage. The tool might be applied
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by trained users to novel systems easily. However, the tool is not yet production ready in a
fire-and-forget application. Besides, again, it remains elusive if the tool can eliminate the
need of skilled and trained users to assess the results of in silico experiments.

The quantitative SAR analysis, on the other hand, is limited to the experimental accuracy
of the system. Furthermore, the SAR analysis using dylightful can’t rely on easy heuristics.
Neither in the case of HCV, nor in the case of, CDK2 it was easy to derive easy heuristics.
Likewise, doing quantitative SAR seems to result in non-linear relationships in the case of
CDK2.

The dylightful software demonstrates the need for the routine application of dynamic models
in drug design and demands for dynamic instead of static experimental methods, too.
To synthesize the computational and experimental modelling, time resolved methods are
needed. The necessary time-resolved methods could include NMR, and Förster resonance
energy transfer microscopy.

4.3 Outlook

Improvements of the software in later work should include better usability through GUIs
and where possible reduction of the state contamination observed during the testing of the
systems ZIKVProt, CDK2, and HCV NS3/4A. More detailed studies regarding resistance
mechanisms of viral and bacterial pathogens would be very interesting.

Moreover, it has been demonstrated that eigenvalues of the Hamiltonian of the dynamic
system were extracted. It would be interesting if the software dylightful can do similar mod-
elling on coarse-grained simulations, such as QM-MM simulations. Still, a study on plain
quantum chemical simulations, e.g., time dependent DFT would be interesting. Studies on
further applications in time-independent quantum chemistry are mandatory.

The software is not limited to classical ligands and could also model protein–protein
or protein–biomolecule interactions. Modelling complexes of biomolecules is indeed a
very intriguing topic because many biological complexes involve orchestrated biomolecules.
Mostly, it has been demonstrated that in the case of CDK2 the understanding of the
mechanisms of inhibition is limited when studying isolated protein-ligand complexes and a
deepened study with CDK complexed with, e.g., cyclin A could give further insights.

To improve the sampling and ease the determination of a meaningful amount of CV, the
sampling techniques during the simulation could be altered and compared to the origi-
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nal test systems. For example, replica exchange or simulated tempering could be applied.
Likewise, shifting from the Desmond[54,55] software to open algorithms for improved trans-
parency, and reproducibility is an interesting path to explore.

Besides, quantitative SAR pipelines would require more complicated modelling approaches,
than linear regression. A promising approach might be QSAR through graph-based neural
networks.

Finally, it would be interesting if the software can be integrated in artificial intelligence
pipelines to analyse or perform (predict) simulations. There are several approaches of pre-
dicting force fields[61–64]. Predicting quantum mechanical properties through deep learning
has become popular, too, such that the gold standard of coupled cluster level of theory
was reached in 2019[65]. On top, simulations based on graph-deep learning estimators were
realised[66]. The software dylightful could help to accelerate research and enable innova-
tions in the field of performing graph-based simulations, as the central representation of the
new dynamic interaction representation (termed markophore) is consisting of two graphs
(however a state graphs), too.
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