dc.contributor.author
Guerci, Daniele
dc.contributor.author
Simon, Pascal
dc.contributor.author
Mora, Christophe
dc.date.accessioned
2022-04-07T15:38:55Z
dc.date.available
2022-04-07T15:38:55Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34640
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34358
dc.description.abstract
Twisted trilayer graphene (TTG) has recently emerged experimentally as a fascinating playground to study correlated and exotic superconducting phases. We have found that TTG hosts a zero-energy higher-order Van Hove singularity with an exponent −1/3 that is stronger than the one predicted in twisted bilayer graphene. This singularity is protected by a threefold rotation symmetry and a combined mirror-particle-hole symmetry and can be tuned with only the twist angle and a perpendicular electric field. It arises from the combined merging of Van Hove singularities and Dirac cones at zero energy, a scheme that goes beyond the recent classifications of Van Hove singularities in single-band models. This structure gives a topological Lifshitz transition, with anomalous exponent −2/5, which can be achieved in TTG by varying a third control parameter such as the atomic corrugation. The interplay between the nonstandard class of higher-order Van Hove singularities and interaction effects offers an unprecedented platform for studying correlation and superconductivity.
en
dc.format.extent
7 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Density of states
en
dc.subject
Dirac fermions
en
dc.subject
Electronic structure
en
dc.subject
Fermi surface
en
dc.subject
van Hove singularity
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Higher-order Van Hove singularity in magic-angle twisted trilayer graphene
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
L012013
dcterms.bibliographicCitation.doi
10.1103/PhysRevResearch.4.L012013
dcterms.bibliographicCitation.journaltitle
Physical Review Research
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
4
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevResearch.4.L012013
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2643-1564
refubium.resourceType.provider
WoS-Alert