dc.contributor.author
Le Quy, Tai
dc.contributor.author
Roy, Arjun
dc.contributor.author
Iosifidis, Vasileios
dc.contributor.author
Zhang, Wenbin
dc.contributor.author
Ntoutsi, Eirini
dc.date.accessioned
2022-05-27T09:07:50Z
dc.date.available
2022-05-27T09:07:50Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34627
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34345
dc.description.abstract
As decision-making increasingly relies on machine learning (ML) and (big) data, the issue of fairness in data-driven artificial intelligence systems is receiving increasing attention from both research and industry. A large variety of fairness-aware ML solutions have been proposed which involve fairness-related interventions in the data, learning algorithms, and/or model outputs. However, a vital part of proposing new approaches is evaluating them empirically on benchmark datasets that represent realistic and diverse settings. Therefore, in this paper, we overview real-world datasets used for fairness-aware ML. We focus on tabular data as the most common data representation for fairness-aware ML. We start our analysis by identifying relationships between the different attributes, particularly with respect to protected attributes and class attribute, using a Bayesian network. For a deeper understanding of bias in the datasets, we investigate interesting relationships using exploratory analysis.
en
dc.format.extent
59 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
benchmark datasets
en
dc.subject
datasets for fairness
en
dc.subject
discrimination
en
dc.subject
fairness-aware machine learning
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
A survey on datasets for fairness-aware machine learning
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e1452
dcterms.bibliographicCitation.doi
10.1002/widm.1452
dcterms.bibliographicCitation.journaltitle
WIREs Data Mining and Knowledge Discovery
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.1002/widm.1452
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1942-4795
refubium.resourceType.provider
WoS-Alert