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Abstract

As decision-making increasingly relies on machine learning (ML) and (big) data,

the issue of fairness in data-driven artificial intelligence systems is receiving

increasing attention from both research and industry. A large variety of fairness-

aware ML solutions have been proposed which involve fairness-related interven-

tions in the data, learning algorithms, and/or model outputs. However, a vital part

of proposing new approaches is evaluating them empirically on benchmark

datasets that represent realistic and diverse settings. Therefore, in this paper, we

overview real-world datasets used for fairness-aware ML. We focus on tabular

data as the most common data representation for fairness-aware ML. We start our

analysis by identifying relationships between the different attributes, particularly

with respect to protected attributes and class attribute, using a Bayesian network.

For a deeper understanding of bias in the datasets, we investigate interesting rela-

tionships using exploratory analysis.
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1 | INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) are widely employed nowadays by businesses, governments, and
other organizations to improve their operational quality and assist in decision-making in areas such as loan approval
(Mukerjee et al., 2002), recruiting (Faliagka et al., 2012), school admission (Moore, 1998), risk prediction (Yeh &
Lien, 2009). There are many advantages of using algorithmic decision-making as computers can efficiently analyze large
amounts of data with high accuracy. Along with the advantages, unfortunately, there is plenty of evidence regarding
the discriminative impact of ML-based decision-making on individuals and groups of people on the basis of protected
attributes such as gender or race. As an example, racial-bias was observed in Correctional Offender Management Profil-
ing for Alternative Sanctions (COMPAS; Angwin et al., 2016), a software used by the US courts to assess the risk of
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recidivism; in particular, it has been found that black defendants were predicted with a higher risk of recidivism than
their actual risk compared to white defendants. Another example refers to search algorithms in job search websites; it
has been found that such algorithms exhibit gender-bias as they display higher-paying jobs to male applicants compared
to female ones (Datta et al., 2015; Simonite, 2015).

Data are an essential part of ML. Usage of sensitive information during the learning process is undesirable but hard
to guarantee even if known protected attributes are omitted from the analysis. The reason is the causal effects (Madras
et al., 2019) of such attributes, including observable “proxy” attributes. As an example, the non-protected attribute “zip-
code” was found to be a proxy for the protected attribute “race” (Datta et al., 2017) or the “credit rating” can be used as
a proxy for “safe driving” (Warner & Sloan, 2021). Hence, even if the protected attributes like race or gender are not
used, the resulting ML models can still be biased (Angwin et al., 2016) due to the causal effects of such attributes.
Although methods for detecting proxy attributes exist, for example, Yeom et al. (2018) detect proxies in linear regression
models by using a convex optimization procedure, eliminating all the correlated features might drastically reduce the
utility of the data for the learning problem.

The domain of bias and fairness in ML has attracted much interest in recent years, and as a result, several surveys
provide a broad overview of the area, its technical challenges and solutions (Chhabra et al., 2021; Mehrabi et al., 2021;
Ntoutsi et al., 2020; Pitoura et al., 2021; Xivuri & Twinomurinzi, 2021). However, an overview of the datasets used for
fairness-aware ML evaluation is still missing. As data are a vital part of ML and benchmark datasets a decisive factor
for the success of AI research,1 we believe our survey is serving to fill a gap in the extant research.

In this survey, we overview the different datasets used in the domain of fairness-aware ML, and we characterize
them according to their application domain, protected attributes, and other learning characteristics like cardinal-
ity, dimensionality, and class (im)balance. For each dataset, we provide an exploratory analysis by first using a
Bayesian network (BN) to identify the relationships among attributes. Based on the BN, we provide a graphical
analysis of the attributes for a deeper understanding of bias in the dataset. The BN illustrates the conditional (in)
dependence between the protected attribute(s) and the class attribute; thus, it reduces the space and complexity of
data analysis that needs to be performed to discover and clarify the fairness-related problems in the dataset. We
then focus our exploratory analysis on features having a direct or indirect relationship with the protected attri-
butes. We accompany our exploratory analysis with a quantitative evaluation of measures related to predictive and
fairness performance.

We believe that our survey is useful as it gathers many fairness-related datasets scattered around the web and orga-
nizes them in terms of different principles (application domain, learning challenges like dimensionality and class
imbalance, fairness-aware related challenges like the number of protected attributes, etc.). As such, we except that it
will help researchers to easily select the most appropriate datasets for their application domain (e.g., learning analytics
vs. recidivism), learning challenges (e.g., balanced vs. imbalanced classification), classification task (e.g., binary classifi-
cation vs. multiclass learning), fairness-related challenges (e.g., single protected vs. multiple protected attributes, etc.).

As datasets have played a foundational role in the advancement of ML research (Paullada et al., 2021), our survey
also indicates the need for more open benchmark datasets that would reflect different application domains (from educa-
tion and healthcare to recruitment and logistics), different contexts (e.g., spatial, temporal, etc.), various (machine)
learning challenges (dimensionality, imbalance, number of classes, etc.) as well as different notions of fairness
(multidiscrimination, temporal fairness, distributional fairness, etc.). We advocate that the community should also pay
attention to benchmark datasets in parallel to new methods and algorithms. The area of fairness-aware ML will
undoubtedly benefit from having benchmark datasets for various tasks.

The rest of the paper is structured as follows: In Section 2, we describe our methodology for dataset collection and
evaluation. The most commonly used datasets for fairness are presented in Section 3 together with the results of their
exploratory analysis. Section 4 demonstrates a quantitative evaluation of a classification model on the different datasets
with respect to predictive performance and fairness. We summarize several open issues on datasets for fairness-aware
ML in Section 5. Finally, the conclusion and outlook are summarized in Section 6.

2 | METHODOLOGY OF THE SURVEY PROCESS

In this section, we describe our dataset collection strategy and introduce BNs as a tool for learning the structure from
the data. In addition, we provide a summary of fairness measures we will use for the quantitative evaluation.
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2.1 | Strategy for collecting datasets

To identify the relevant datasets, we use Google Scholar2 with “fairness datasets” as the primary query term along with
other terms like “bias,” “discrimination,” “public” to narrow down the search. After identifying the related datasets, we
use Google Scholar to find the related papers which satisfy the following conditions: (1) the public dataset is used in the
experiments, and (2) the learning tasks, that is, classification, clustering, are related to fairness problems. To restrict the
investigation of the related work, we consider only important works as assessed by the number of citations, quality of
publication venue, that is, published in ranked conferences, journals. We consider datasets that have been used in at
least three fairness-related papers. Datasets that are not publicly available via some known repository like the UCI ML
repository,3 Kaggle,4 and so on, are not taken into consideration.

2.2 | Bayesian network

A BN (Holmes & Jain, 2008) is a directed and acyclic probabilistic graphical model which provides a graphical represen-
tation to understand the complex relationships between a set of random variables. In the case of a dataset, random vari-
ables corresponding to the attributes of the feature space in which the data are represented. The graphical structure
ℳ : V,Ef g of a BN contains a set of nodes V (random variables/attributes) and a set of directed edges E. Let X1,X2,…,Xd

be the attributes defining the feature space X of a dataset D, such that X �ℝd. For two attributes Xi,Xj �X , if there is a
directed edge from Xi to Xj, then Xi is called the parent of Xj. The edges indicate conditional dependence relations, that
is, if we denote Xpai as the parents of Xi, the probability of Xi is conditionally dependent on the probability of Xpai . If
we know the outcome (value) of Xpai , then the probability of Xi is conditionally independent of any other ancestor
node. The structure of a BN describes the relationships between given attributes, that is, the joint probability distribu-
tion of the attributes in the form of conditional independence relations. Formally,

P X1,X2,…,Xdð Þ¼
Yd
i¼1

P XijXpai

� �
: ð1Þ

Learning the structure of a BN from the dataset D is an optimization problem (Husmeier et al., 2006), namely to learn an
optimal BN model ℳ ? , which maximizes the likelihood of generating D. A set of parameters of any BN model ℳ, den-
oted by cℳ, is the set of edges E which represents the conditional independence relationship between the attribute set
V. Moreover, between the possible models M, the less complex one, that is, the one with the least cℳ, should be
selected.

Note that in a learned BN model ℳ, the position of the class attribute y can be in any position (root-, internal-, or
leaf-node), since the objective is to maximize P Djℳð Þ. However, we aim to investigate the factors (protected/non-
protected attributes) that determine the class attribute's prediction probability. Therefore, we also employ a constraint
on the class attribute to be a leaf node in our learning objective. Formally the problem is defined as:

max
ℳ ?

P Djℳð Þ� γcℳn o
,

subject to y�ℒ,
ð2Þ

where y�X is the class attribute, ℒ is the set of leaf nodes and γ is a penalty hyperparameter controlling the effect of
the model's complexity in the final model selection. The aim of the learned model is to maximize P XijXpai

� �
for each

Xi �X (Equations 1 and 2).
A high conditional probability often refers to a strong correlation (Daniel, 2017). Attribute Xi is strongly correlated with

Xj if there exists a direct edge between Xi and Xj, for any pair of attributes Xi,Xj �X . Intuitively, the correlation is com-
paratively weaker with ancestors that are not immediate parents, that is, indirect edges. In addition, the attributes which do not
have any incoming or outgoing edge (direct/indirect connection) with Xi, the correlation between them will be negligible.
As a consequence, if we find any direct/indirect edge from any protected attribute to the class attribute in our learned
BN structure ℳ ? then we may infer that the dataset is biased with respect to the specific protected attribute.

When learning a BN, the continuous variables are often discretized because many BN learning algorithms cannot
efficiently handle continuous variables (Chen et al., 2017). Therefore, we need to discretize the continuous numeric
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data attributes into meaningful categorical attributes to keep the complexity of learning the BN model in a polynomial
time. We describe the discretization procedure for each dataset in Section 3.

2.3 | Fairness metrics

Measuring bias in ML models comprises the first step to bias elimination. Fairness depends on context; thus, a large
variety of fairness measures exists. Only in the computer science research area, more than 20 measures of fairness have
been introduced thus far (Verma & Rubin, 2018; Žliobaitė, 2017). Nevertheless, there is no fairness measure that is uni-
versally suitable (Foster et al., 2016; Verma & Rubin, 2018). Therefore, to make the experimental results more diverse,
we report on three prevalent fairness measures: statistical parity, equalized odds, and Absolute Between-ROC Area
(ABROCA). In which, statistical parity (Dwork et al., 2012) is one of the earliest and most popular discrimination mea-
sures in the fairness-aware ML literature. Statistical parity (SP) is also considered as the statistical counterpart of the
legal doctrine of disparate impact (Krop, 1981). However, one main disadvantage of SP is that it does not require com-
pliance to the ground truth labels; hence, in many ML scenarios might not be ideal (Hardt et al., 2016). Equalized odds
introduced by (Hardt et al., 2016) countered this problem by considering the ground truth of both positive- and
negative-class instances and grew to be one of the most promising fairness notion, being used in the leading edge
methods (Iosifidis & Ntoutsi, 2019; Krasanakis et al., 2018; Zafar, Valera, Gomez Rodriguez, & Gummadi, 2017). Later
Gardner et al. (2019) argued that equalized odds does not consider any formal strategy such as slicing analysis to iden-
tify the prevalent biases, which might be a necessity in particular domains such as education. ABROCA measure intro-
duced by (Gardner et al., 2019) tackles such an analysis issue and is argued to be an illustratively efficient method of
representing the divergence of values of a protected attribute. Although, as mentioned earlier, there is a rich literature
of fairness notions to follow, in this work, we limit our study to the above-mentioned notions, as these notions together
cover a diverse area of the fairness concepts currently followed in the state-of-the-art fairness-aware ML practices.

The measures are presented hereafter assuming the following problem formulation: Let D be a binary classification
dataset with class attribute y¼ þ,�f g. Let S be a binary protected attribute with S� s,sf g, in which s is the discrimi-
nated group (referred to as protected group), and s is the non-discriminated group (referred to as non-protected group).
For example, let S = “Sex” � {Female, Male} be the protected attribute; s = “Female” could be the protected group and
s = “Male” could be the non-protected group. We use the notation sþ (s�), sþ (s�) to denote the protected and non-
protected groups for the positive (negative, respectively) class.

2.3.1 | Statistical parity

SP introduced by (Dwork et al., 2012) states that the output of any classifier satisfies SP if the difference (bias) in
predicted outcome (by) between any two groups under study (i.e., s and s) is up to a predefined tolerance threshold ϵ.
Formally:

P byjS¼ sð Þ�P byjS¼ sð Þ≤ ϵ: ð3Þ

Using the definition in Equation (3) to measure the bias of a classifier, various measuring notions (Simoiu et al., 2017;
Žliobaitė, 2015) have been proposed. The violation of SP can be measured as:

SP¼ P by¼þjS¼ sð Þ�P by¼þjS¼ sð Þ, ð4Þ

The value domain is: SP� �1,1½ �, with SP¼ 0 standing for no discrimination, SP� 0,1ð � indicating that the protected
group is discriminated, and SP� �1,0½ Þ meaning that the non-protected group is discriminated (reverse discrimination).

2.3.2 | Equalized odds

Equalized odds (shortly Eq.Odds) (Hardt et al., 2016) is preserved when the predictions by conditional on the ground
truth y is equal for both the groups s and s defined by S. Formally:
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Eq:Odds :P by¼þ j S¼ s,Y ¼ yð Þ¼P by¼þjS¼ s,Y ¼ yð Þ, ð5Þ

where y is the ground truth class label, by is the predicted label.
Using Equation (5) we measure the prevalent bias as:

Eq:Oddsviol¼
X

y � þ,�f g
P by¼þ j S¼ s,Y ¼ yð Þ�P by¼þjS¼ s,Y ¼ yð Þj j: ð6Þ

The value domain is: Eq:Oddsviol � 0,2½ �, with 0 standing for no discrimination and 2 indicating the maximum
discrimination.

2.3.3 | Absolute Between-ROC Area

This is a fairness measure introduced by the research of (Gardner et al., 2019). It is based on the receiver operating char-
acteristics (ROC) curve. ABROCA measures the divergence between the protected (ROCs) and non-protected group
(ROCs) curves across all possible thresholds t� 0,1½ � of false-positive rates and true-positive rates. In particular, it mea-
sures the absolute difference between the two curves in order to capture the case that the curves may cross each other
and is defined as:

Z 1

0
ROCs tð Þ�ROCs tð Þj jdt: ð7Þ

ABROCA takes values in the 0,1½ � range. The higher value indicates a higher difference in the predictions between the
two groups and therefore, a more unfair model.

3 | DATASETS FOR FAIRNESS

In this section, we provide a detailed overview of real-world datasets used frequently in fairness-aware learning. We
organize the datasets in terms of the application domain, namely: financial datasets (Section 3.1), criminological
datasets (Section 3.2), healthcare and social datasets (Section 3.3), and educational datasets (Section 3.4). A summary of
the statistics of the different datasets5 is provided in Table 1.

For each dataset, we discuss the basic characteristics like cardinality, dimensionality, and class imbalance as well as
typically used protected attributes in the literature. When available, we also provide temporal information regarding
the data collection and the timespan of the datasets.

We start our analysis with the BN structure learned from the data (see Section 2.2), which can help us to understand
the relationships between attributes of the dataset. In addition, the BN visualization already provides interesting
insights on the dependencies between non-protected and protected attributes and their conditional dependencies in
predicting the class attribute. We further provide an exploratory analysis of interesting correlations from the Bayesian
graph (for both direct and indirect edges), particularly those related to the fairness problem (paths to and from protec-
ted attributes).

3.1 | Financial datasets

3.1.1 | Adult dataset

The adult dataset (Kohavi, 1996) (also known as “Census Income” dataset6) is one of the most popular datasets for
fairness-aware classification studies (Appendix A). The classification task is to decide whether the annual income of a
person exceeds 50,000 US dollars based on demographic characteristics.
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Dataset characteristics
The dataset consists of 48,842 instances, each described via 15 attributes, of which 6 are numerical, 7 are categorical
and 2 are binary attributes. An overview of attribute characteristics is shown in Table 2. We discard the attribute fnlwgt
(final weight) as the suggestions of related work (B. H. Zhang et al., 2018; Kamiran & Calders, 2012; Calders
et al., 2009; Calders & Kamiran, 2010).

Missing values exist in 3,620 (7.41%) records. Many researchers remove the instances containing missing values
(Choi et al., 2020; Iosifidis & Ntoutsi, 2018, 2019; Zafar, Valera, Rogriguez, & Gummadi, 2017) in their experiments;
other researches consider the whole dataset or do not clarify how the missing values are handled. To avoid the effect of
missing values on the analysis, we remove the missing data and obtain a clean dataset with 45,222 instances.

Protected attributes
Typically the following attributes have been used as bias triggers in the literature7:

• sex = {male, female}: the dataset is dominated by male instances. The ratio of male:female is 32,650:16,192
(66.9%:33.1%).

• race = {white, black, asian-pac-islander, amer-indian-eskimo, other}. Typically, race is used as a binary attribute in the
related work (Chakraborty, Peng, & Menzies, 2020; Luong et al., 2011; Zafar, Valera, Rogriguez, & Gummadi, 2017):
race = {white, non-white}. The dataset is dominated by white people, the white:non-white ratio is 38,903:6,319
(86%:14%). In our analysis we also encode race as a binary attribute.

• age = [17–90]. Typically, age is used as a categorical attribute in the related work. In our analysis, we also discretize
age as (Zafar, Valera, Rogriguez, & Gummadi, 2017): age = {25–60, <25 or >60}. The dataset is dominated by the
[25–60] years old group, the ratio is 35,066:10,156 (77.5%:22.5%).

In the research of (Deepak & Abraham, 2020), marital-status and native-country are considered as the protected attri-
butes. However, due to missing information on their preprocessing method on these attributes, we will not consider
those as the protected attributes in our survey.

Class attribute
The class attribute is income � ≤ 50K, > 50Kf g indicating whether an individual makes less or more than 50K. The
positive class is “>50K.” The dataset is imbalanced with an imbalance ratio (IR) 1 : 3:03 (positive:negative).

TABLE 2 Adult: attributes characteristics

Attributes Type Values
#Missing
values Description

age Numerical [17–90] 0 The age of an individual

workclass Categorical 7 2,799 The employment status (private, state-gov, etc.)

fnlwgt Numerical [13,492–1,490,400] 0 The final weight

education Categorical 16 0 The highest level of education

educational-num Numerical 1–16 0 The highest level of education achieved in numerical form

marital-status Categorical 7 0 The marital status

occupation Categorical 14 2,809 The general type of occupation

relationship Categorical 6 0 Represents what this individual is relative to others

race Categorical 5 0 Race

sex Binary {Male, Female} 9 The biological sex of the individual

capital-gain Numerical [0–99,999] 0 The capital gains for an individual

capital-loss Numerical [0–4,356] 0 The capital loss for an individual

hours-per-week Numerical [1–99] 0 The hours an individual has reported to work per week

native-country Categorical 41 857 The country of origin for an individual

income Binary {≤50K, >50K} 0 Whether or not an individual makes more than $50,000 annually
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Bayesian network
Figure 1 illustrates the BN learned from the dataset. The class label income is the leaf node, that is, there are no
outgoing edges. To generate the BN, we discretize four numerical attributes (age, capital gain, capital loss, hours per
week) as follows: age = {25–60, <25 or >60}; capital gain = {≤5000, >5000}, capital loss = {≤40, >40}; hours per
week = {<40, 40–60, >60}. To reduce the computation space of the BN generator, we also transform seven categorical
attributes as follows: workclass = {private, non-private}; education = {high, low}; marital-status = {married, other};
relationship = {married, other}; native-country = {US, non-US}; race = {white, non-white}; occupation = {office, heavy-
work, other}.

As demonstrated in Figure 1, there is a direct dependency between income and education as well as between sex and
education. Therefore, we explore in more detail the distribution of the population with respect to education, income,
and sex in Figure 2a. As expected, highly educated people have a high income. However, in the high education segment
and for the high-income class, the number of males is at least five times higher than that of females showing an under-
representation of high education women in the high-income class. Based on the dependence of hours per week attribute
on sex, we plot the weekly working hours with respect to income and sex (Figure 2b). The number of males who work
more than 40 hours per week is approximately seven times higher than the number of females.

Interestingly, there are many outgoing edges from the relationship and age attributes in the BN. We show the distri-
bution of sex in each class based on the age (x-axis) and the relationship status (y-axis) in Figure 3. A first observation is
that a great amount of young (less than 25 years old) or old (more than 60 years old) people do not receive more than
50K. Unmarried people have an income higher than 50 K when they are older than 45 years, while people in the Own-
child group can have a high income when they are young. In general, there are more males than females for almost all
relationship statuses for the high-income group.

FIGURE 1 Adult: Bayesian network (class label: income, protected attributes: sex, race, age)
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Another interesting observation is that there is a direct edge from protected attribute sex to race. This suggests that
choosing sex as the protected attribute would make the fairness-aware classifier attain fairness with respect to race. Evi-
dence of such outcome is seen in the work of (Friedler et al., 2019).

3.1.2 | KDD Census-Income dataset

The KDD Census-Income8 dataset (Dheeru & Karra Taniskidou, 2017) was collected from Current Population Surveys
implemented by the US Census Bureau from 1994 to 1995. The dataset has been considered in numerous related works
(Appendix A). The prediction task is to decide if a person receives more than 50,000 US dollars annually or not. The
prediction task is the same as the Adult dataset. However, the differences between the two datasets described by the
dataset's authors (Dheeru & Karra Taniskidou, 2017) are: “the goal field was drawn from the total person income field
rather than the adjusted gross income and may, therefore, behave differently than the original adult goal field.”

Dataset characteristics
The dataset contains 299,285 instances with 41 attributes, 32 of which are categorical, 7 are numerical and 2 are binary
attributes. An overview of the dataset characteristics9 is shown in Tables 3 and 16 (Appendix B). Attribute weight is
omitted as proposed by the authors of the dataset (Dheeru & Karra Taniskidou, 2017).

Missing values exist in 157,741 (52.71%) instances. Because related studies only focus on a subset of data and fea-
tures, we clean the dataset by eliminating all missing values. In particular, we remove four features migration-code-
change-in-msa, migration-code-change-in-reg, migration-code-move-within-reg, migration-prev-res-in-sunbelt due to their
high proportion in the missing values, as illustrated in Table 3. The result is a cleaned dataset with 284,556 instances.

Protected attributes
Previous researches consider sex as a protected attribute (Iosifidis & Ntoutsi, 2019; Iosifidis & Ntoutsi, 2020; Ristanoski
et al., 2013). Attribute race = {white, black, asian-pac-islander, amer-indian-eskimo, other} could be also employed as a

≤≤
≤ ≤

(a) (b)

FIGURE 2 Adult: relationships of education, weekly working hours, education, and income attributes

FIGURE 3 Adult: distribution of age, relationship, and income with respect to sex
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protected attribute because it has the same role as in the original Adult dataset. Similarly to the Adult dataset, the KDD
Census-Income dataset is dominated by white people; there are 239,081 (84.01%) white people, hence, we encode race as
a binary attribute for our analysis.

• sex = {male, female}. The dataset is slightly imbalanced towards female instances, the male:female ratio is
136,447:148,109 (48%:52%).

• race = {white, non-white}. The dataset is dominated by white people, the white:non-white ratio is
239,081:29,239 (86%:14%).

Class attribute
The class attribute is income � ≤ 50K, > 50Kf g indicating whether an individual makes less or more than 50K. The
positive class is “>50K.” The dataset is very imbalanced with an IR 1 : 15:30 (positive:negative).

Bayesian network
To generate the BN, we encode the following attributes: age = {≤25, 26–60, >60}; wage-per-hour = {≤500, 501–1000,
>1000}; industry = {≤30, >30}; occupation = {≤10, >10}; capital-gain = {≤500, >500}; capital-loss = {≤500, >500};

TABLE 3 KDD Census-Income: attributes characteristics

Attributes Type Values
#Missing
values Description

age Numerical [0–90] 0 The age of an individual

workclass Categorical 9 0 Represents class of the worker

industry Categorical 52 0 The industry code

occupation Categorical 47 0 The occupation code

education Categorical 17 0 The highest level of education

wage-per-hour Numerical [0–9,999] 0 Wage per hour

marital-status Categorical 7 0 The marital status

race Categorical 5 0 Race

sex Binary {Male, Female} 0 The biological sex of the individual

employment-status Categorical 8 0 The employment status (full or part time)

capital-gain Numerical [0–99,999] 0 The capital gains for an individual

capital-loss Numerical [0–4,608] 0 The capital loss for an individual

dividends-from-stocks Numerical [0–99,999] 0 The dividends from stocks

tax-filer-stat Categorical 6 0 The tax filer status (joint under 65, joint 65+, etc.)

detailed-household-and-
family-stat

Categorical 38 0 The detailed household and family (child under 18,
grandchild etc.)

detailed-household-
summary-in-
household

Categorical 8 0 The detailed household summary (spouse, non-relative, etc.)

num-persons-worked-
for-employer

Numerical [0–6] 0 The number of persons worked for the employer

family-members-under-
18

Categorical 5 0 Family members under 18 (both parent, mother only, etc.)

citizenship Categorical 5 0 The citizenship

own-business Categorical 3 0 Own business or self employed

veterans-benefits Categorical 3 0 Veterans benefits

weeks-worked Numerical [0–52] 0 The number of weeks worked in a year

year Categorical 2 0 The year in which the interviewee answered

income (class) Binary {≤50K, >50K} 0 Whether an individual makes more than $50,000 annually
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dividends-from-stocks = {≤500, 501–2000, >2000}; num-persons-worked-for-employer = {0, >0}; weeks-worked-in-
year = {≤26, 27–51, 52}. The ranges of encoded attributes are chosen to ensure each group has values. To reduce the
complexity, we eliminate these attributes: enroll-in-edu-inst-last-wk, major-industry, major-occupation since they have a
very low correlation with other features. Also, for efficiency purposes, we generate the BN on a randomly selected 10%
sample of the dataset rather than on the complete dataset. The learned BN is shown in Figure 4; the class label income
is set as a leaf node.

As shown in Figure 4, income is conditionally dependent on sex, occupation and the number of week worked in year
(weeks-worked) attributes. Regarding sex attribute, females are largely underrepresented in the high income group, con-
sisting of 13,691 males (�10.03% of the male population) and only 3,711 females (�2.51% of the female population).
Regarding the number of weeks worked per year and income, as shown in Figure 5, women tend to do part-time jobs,
that is, the number of weeks worked per year is less than 26. In addition, women earn less money than men even
though they all work 52 weeks per year. That is shown by the number of men with high income is approximately five
times more than the number of women.

As mentioned, race could also be considered as the protected attribute. Based on the data, the income of non-white
people is significantly different from the income of the white group. Only 3.2% of the non-white group have an income
above 50K, compared to 6.7% for the white group. Furthermore, since age has a conditional dependence on marital-sta-
tus attribute, we investigate the relationship between these attributes, the protected attribute sex and the class label
income in Figure 6. As shown in this figure, males comprise the majority of the high-income group, especially for cer-
tain population segments like the Married-civilian spouse present segment where the number of males is 5 times higher

FIGURE 4 KDD Census-Income: Bayesian network (class label: income, protected attributes: sex, race)
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than that of females. Interestingly, the number of widows is 1.7 times higher than the number of widowers in terms of
high income. Regarding the age effect, most people have a high income when they are over 40 years old. With respect
to the protected attributes, there is no edge between race and sex, which suggests the researchers should perform their
fairness-aware models on both these protected attributes.

3.1.3 | German credit dataset

The German credit10 dataset (Dheeru & Karra Taniskidou, 2017) consists of samples of bank account holders. The
dataset is used for risk assessment prediction, that is, to determine whether it is risky to grant credit to a person or not.
The dataset is frequently employed in fairness-aware learning researches (Appendix A).

Dataset characteristics
The dataset contains only 1000 instances without any missing values. Each sample is described by 13 categorical,
7 numerical and 1 binary attributes. An overview of all attributes is presented in Table 4. Attribute personal-status-and-
sex contains information of marital status and the gender of people. We disentangle gender from personal status and
create two separate attributes: marital-status and sex. The original personal-status-and-sex attribute is omitted from fur-
ther analysis.

Protected attributes
In all studies, sex is considered as the protected attribute. Age can also be considered as the protected attribute after
binarization into {young, old} by age thresholding at 25 (Friedler et al., 2019; Kamiran & Calders, 2009).

• sex = {male, female}. The dataset is dominated by male instances, the ratio of male:female is 690:310 (69%:31%). The
percentage of women identified as bad customers is 35.2% while that of men is only 27.7%.

• age = {≤25, > 25}: The dataset is dominated by people older than 25 years, the ratio is 810:190 (81%:19%). We dis-
cover that there is a discrimination on the age of customers. There are 42.1% of young people are recognized as bad
customers while this proportion in old people is 27.2%.

Class attribute
The class attribute is class-label � good,badf g revealing the customer's level of risk. The positive class is “good.” The
dataset is imbalanced with an IR 2:33 : 1 (positive:negative).

Bayesian network
We transform the numerical attributes into categorical as follows: duration = {≤6, 7–12, >12} (short, medium, and
long-term); credit-amount = {≤2000, 2000–5000, >5000} (low, medium, and high income); age = {≤25, >25}. The
extracted BN is shown in Figure 7; class-label is set as a leaf node.

≤

≤

≤

FIGURE 5 KDD Census-Income: relationship of the number of weeks worked per year and income with respect to sex
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The BN consists of two disconnected components. First, class-label is conditionally dependent on the checking-
account attribute. We investigate in more detail this relationship in Figure 8a. As we can see, a very high proportion of
people, that is, 88.3%, having no checking account is identified as the good customers while half of the customers hav-
ing a balance less than 0 DM (Deutsche Mark) in their checking account are classified as the bad customers.

Second, interestingly, credit-amount has a direct effect on many attributes such as installment-rate, duration. We dis-
cover that people who borrow a large amounts of money tend to borrow for a long period. For example, 93.6% of inter-
viewees make a loan of more than 5000 DM with a loan duration of more than 12 months. As illustrated in Figure 8b,
the number of customers who have to pay the highest installment rate (visualized as the “red” columns) is inversely
proportional to the credit-amount. Regarding the protected attributes, a direct edge between sex and age is observed.
This is the starting point of the research question “Does the fairness-aware model obtain fairness with respect to sex if
age is chosen as the protected attributes?”

FIGURE 6 KDD Census-Income: relationship of marital status, age, sex, and income

TABLE 4 German credit: attributes characteristics

Attributes Type Values #Missing values Description

checking-account Categorical 4 0 The status of existing checking account

duration Numerical [4–72] 0 The duration of the credit (month)

credit-history Categorical 5 0 The credit history

purpose Categorical 10 0 Purpose (car, furniture, education, etc.)

credit-amount Numerical [250–18,424] 0 Credit amount

savings-account Categorical 5 0 Savings account/bonds

employment-since Categorical 5 0 Present employment since

installment-rate Numerical [1–4] 0 The installment rate in percentage of disposable income

personal-status-and-sex Categorical 4 0 The personal status and sex

other-debtors Categorical 3 0 Other debtors/guarantors

residence-since Numerical [1–4] 0 Present residence since

property Categorical 4 0 Property

age Numerical [19–75] 0 The age of the individual

other-installment Categorical 3 0 Other installment plans

housing Categorical 3 0 Housing (rent, own, for free)

existing-credits Numerical [1–4] 0 Number of existing credits at this bank

job Categorical 4 0 Job (unemployed, (un)skilled, management)

number-people-provide-
maintenance-for

Numerical [1–2] 0 Number of people being liable to provide
maintenance for

telephone Binary {Yes, None} 0 Telephone number

foreign-worker Binary {Yes, No} 0 Is the individual a foreign worker?

class-label Binary {Good, Bad} 0 Class
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3.1.4 | Dutch census dataset

The Dutch census dataset (Van der Laan, 2000) represented aggregated groups of people in the Netherlands for the year
2001. Researchers (Appendix A) have used Dutch dataset to formulate a binary classification task to predict a person's
occupation which can be categorized as high-level (prestigious) or low-level profession.

Dataset characteristics
The dataset includes 60,420 samples11 where each sample is described by 12 attributes. An overview of attributes is
presented in Table 5.

Protected attributes
In the related work, they consider attribute sex = {male, female} as the protected attribute, male:female ratio is
30,147:30,273 (49.9%:50.1%).

Class attribute
The class attribute is occupation � 0,1f g demonstrating if an individual has a prestigious profession or not. The positive
class is 1 (high-level). This is a fairly balanced dataset in our survey with an IR 1 : 1:10 (positive:negative).

FIGURE 7 German credit: Bayesian network (class label: class-label, protected attributes: sex, age)
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FIGURE 8 German credit: relationships of class label and attributes

14 of 59 LE QUY ET AL.



Bayesian network
We use all attributes in the dataset to generate the BN. As illustrated in Figure 9, the leaf node occupation is condition-
ally dependent on economic status, education level, and sex attributes. In fact, 62.6% of males (18,860 out of 30,147) have
a high-level occupation, while this proportion on females group is only 32.7%. In addition, people with high education
are doing prestigious jobs and vice versa, as depicted in Figure 10. For example, 89.5% of people having tertiary level are
working in high-level jobs while around 80% of people with lower secondary degrees are doing low-level work. Interest-
ingly, age has a direct effect on many attributes.

3.1.5 | Bank marketing dataset

The bank marketing12 dataset (Moro et al., 2014) is related to the direct marketing campaigns of a Portuguese banking
institution from 2008 to 2013. There is a variety of researchers investigating this dataset in their studies (Appendix A).
The classification goal is to predict whether a client will make a deposit subscription or not.

Dataset characteristics
The dataset comprises 45,211 samples, each with 6 categorical, 4 binary and 7 numerical attributes, as summarized in
Table 6.

Protected attributes
In the literature, marital-status can be considered as the protected attribute (Backurs et al., 2019; Bera et al., 2019;
Chierichetti et al., 2017; Hu et al., 2020; Ziko et al., 2021). Besides, in several studies (Fish et al., 2016; Krasanakis
et al., 2018; Zafar, Valera, Rogriguez, & Gummadi, 2017), they consider age as the protected attribute which is binary
separated into people who are between the age of 25–60 years old and less than 25 or more than 60 years old.

• age = {25–60, <25 or >60}: the dataset is dominated by people from 25 to 60 years old, the ratio of 25–60:<25 or >60
is 43,214:1997 (95.6%:4.4%).

• marital = {married, non-married}: married group is the majority with the ratio of married:non-married is
27,214:17,997 (60.2%: 39.8%).

Class attribute
The class attribute is y � Yes,Nof g presenting whether a customer will subscribe a term deposit or not. The positive
class is “Yes.” The dataset is imbalanced with an IR 1 : 7:55 (positive:negative).

TABLE 5 Dutch census: attributes characteristics

Attributes Type Values
#Missing
values Description

sex Binary {Male, Female} 0 The biological sex of the person

age Categorical 12 0 The age group of the person (0–4, 5–9, etc.)

household_position Categorical 8 0 The relationship to household head (spouse, child, etc.)

household_size Categorical 6 0 The size of the household the person belongs to

prev_residence_place Binary {Netherlands, non-Netherlands} 0 The place of the person's residence prior to the Census

citizenship Categorical 3 0 The person's citizenship status

country_birth Categorical 3 0 Whether the person was born in the Netherlands or elsewhere

edu_level Categorical 6 0 The person's level of educational attainment

economic_status Categorical 3 0 The person's economic status (class of worker)

cur_eco_activity Categorical 12 0 The current economic activity

marital_status Categorical 4 0 The person's current marital status according to law or custom

occupation Binary {0, 1} 0 The person's occupation (0: low-level, 1: high-level)
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Bayesian network
We perform a preprocessing step to transfer the numerical attributes into categorical: job = {blue-collar, management-
service, other}; balance = {0, >0}; day = {≤15, >15}; duration = {≤120, 121–600, >600}; campaign = {≤1, 2–5, >5};
pdays = {≤30, 31–180, >180}; previous = {0, 1–5, >5}. Figure 11 visualizes the BN of the Bank marketing dataset. The
class label y, as illustrated in Figure 11, is conditionally dependent on poutcome, month, and duration attributes. An
insight about the relationship between the last contact duration and class label y is described in Figure 12. The ratio of
clients who will make a deposit subscription is proportional to the duration of the last contact. When the talk is taken
place in less than 2 minutes, 98.5% of people will not make the deposit subscription. However, if a marketing staff can
maintain the talk with customers over 10 minutes, 48.4% of customers will say Yes. Interestingly, in the BN, both
protected attributes age and marital have no effect on the class label y. However, the protected attributes are connected
together by an in-direct edge, which could be a reason for a similar accuracy of fairness-aware models of the related
work (Hu et al., 2020) and (Krasanakis et al., 2018).

FIGURE 9 Dutch census: Bayesian network (class label: occupation, protected attribute: sex)

FIGURE 10 Dutch census: relationship between education level and occupation
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3.1.6 | Credit card clients dataset

The credit card clients13 dataset (Yeh & Lien, 2009) investigated the customers' default payments in Taiwan in October
2005. The goal is to predict whether a customer will face the default situation in the next month or not. The data have
been used for default payment prediction in several studies (Appendix A).

Dataset characteristics
The dataset includes 30,000 customers described by 8 categorical, 14 numerical and 2 binary attributes, as depicted in
Table 7. There is no missing value in the dataset.

Protected attributes
In the literature, sex (Bechavod & Ligett, 2017; Berk et al., 2017; Deepak & Abraham, 2020), education, marriage (Bera
et al., 2019; Deepak & Abraham, 2020) are considered as the protected attributes.

• sex = {male, female}: the dataset is dominated by females, the ratio of male:female is 11,888:18,112 (39.6%:60.4%).
• marriage = {married, single, others}: single group is the majority with the ratio of married:single:others is

13,659:15,964:377 (45.5%:53.2%:1.3%).
• education = {graduate school, university, high school, others}: university is the biggest group with 14,030 (46.8%)

clients.

Class attribute
The class attribute is default payment � 0,1f g indicating whether a customer will suffer the default payment situation
in the next month (1) or not (0). The positive class is 1. This is an imbalanced dataset with an IR 1 : 3:52 (positive:
negative).

TABLE 6 Bank marketing: Attributes characteristics

Attributes Type Values
#Missing
values Description

age Numerical [18–95] 0 The age of the client

job Categorical 12 0 The type of job (admin, self-employed, technician, etc.)

marital Categorical 3 0 The marital status

education Categorical 4 0 The education level

default Binary {Yes, No} 0 Has the credit in default?

balance Numerical [�8,019 to 102,127] 0 The balance of this client's account

housing Binary {Yes, No} 0 Has a housing loan?

loan Binary {Yes, No} 0 Has a personal loan?

contact Categorical 3 0 The contact communication type

day Numerical [1–31] 0 The last contact day of the week

month Categorical 12 0 The last contact month of the year

duration Numerical [0–4,918] 0 The last contact duration, in seconds

campaign Numerical [1–63] 0 The number of contacts performed during this campaign
and for this client

pdays Numerical [�1 - 871] 0 The number of days that passed by after the client
was last contacted

previous Numerical [0–275] 0 The number of contacts performed before this campaign and
for this client

poutcome Categorical 4 0 The outcome of the previous marketing campaign

y (class) Binary {Yes, No} 0 Has the client subscribed a term deposit?
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Bayesian network
To generate the BN, we convert the numerical attributes: age = {≤35, 36–60, >60}; the amount of the given credit (limit_bal),
the amount of the bill statements (bill_amt_1, …, bill_amt_6), and the amount of the previous payments (pay_amt_1,
bill_1, …, pay_amt_6) = {≤50,000, 50,001–200,000, >200,000} (corresponding to the low, medium, high levels); history of the
past payments pay_0, …, pay_6 = {pay duly, 1–3 months, >3 months}. The BN is presented in Figure 13.

The class label default payment is directly conditionally dependent on the repayment status in July 2005 (attribute
pay_3), and the given credit (attribute limit_bal) and indirectly dependent on the amount of bill statements (the attri-
butes with a prefix bill_amt). As demonstrated in Figure 14, the ratio of the default payment phenomenon is inversely
proportional to the credit limit balance. Moreover, we discover that the percentage of males having the default payment
in the next month is higher than that of females. In particular, the ratio of males with the default payment is 24.2%

FIGURE 11 Bank marketing: Bayesian network (class label: y, protected attributes: age, marital)

≤

FIGURE 12 Bank marketing: relationship between the last contact duration and class label
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while that of females is only 20.8%. Interestingly, the protected attributes (sex, education, marriage) are conditionally
dependent on each other.

Summary of the financial datasets
In general, the financial datasets are very diverse as they were collected from several diverse locations (from the United
States to Taiwan) and at very different time points (from 1994 to 2013). With respect to the collection time, the datasets
are pretty old, esp. Adult and KDD census datasets. These datasets have been heavily investigated in the related work
and under different protected attributes. The most prevalent protected attribute is sex followed by race, age, marriage,
and education. An interesting observation is that the protected attributes are often related to each other (a strong or
weak relationship), for example, race with education. Due to these dependencies, ensuring fairness for one protected
attribute may positively affect fairness for other protected attributes. Moreover, most of the datasets in this category are
imbalanced, with the only exception of the Dutch census dataset which is almost balanced (see Table 1). In terms of
class imbalance, datasets demonstrate different imbalance ratios.

3.2 | Criminological datasets

3.2.1 | COMPAS dataset

The COMPAS (Angwin et al., 2016) is a recent dataset, compared to the rest of the datasets in our survey, which was
released by ProPublica14 in 2016 based on the Broward County data (collected from January 2013 to December 2014).

TABLE 7 Credit card clients: Attributes characteristics

Attributes Type Values
#Missing
values Description

limit_bal Numerical [10,000–1000,000] 0 The amount of the given credit (New Taiwan dollar)

sex Binary {Male, Female} 0 The biological sex of the client

education Categorical 7 0 The education level

marriage Categorical 3 0 The marital status

age Numerical [21–79] 0 The age of the client (year)

pay_0 Categorical 11 0 The repayment status in September 2005
(pay duly, delay 1 month, etc.)

pay_2 Categorical 11 0 The repayment status in August 2005

pay_3 Categorical 11 0 The repayment status in July 2005

pay_4 Categorical 11 0 The repayment status in June 2005

pay_5 Categorical 10 0 The repayment status in May 2005

pay_6 Categorical 10 0 The repayment status in April 2005

bill_amt1 Numerical [�165,580 to 964,511] 0 The amount of bill statement in September 2005

bill_amt2 Numerical [�69,777 to 983,931] 0 The amount of bill statement in August 2005

bill_amt3 Numerical [�157,264 to 1,664,089] 0 The amount of bill statement in July 2005

bill_amt4 Numerical [�170,000 to 891,586] 0 The amount of bill statement in June 2005

bill_amt5 Numerical [�81,334 to 927,171] 0 The amount of bill statement in May 2005

bill_amt6 Numerical [�339,603 to 961,664] 0 The amount of bill statement in April 2005

pay_amt1 Numerical [0–873,552] 0 The amount paid in September 2005

pay_amt2 Numerical [0–1,684,259] 0 The amount paid in August 2005

pay_amt3 Numerical [0–896,040] 0 The amount paid in July 2005

pay_amt4 Numerical [0–621,000] 0 The amount paid in June 2005

pay_amt5 Numerical [0–426,529] 0 The amount paid in May 2005

pay_amt6 Numerical [0–528,666] 0 The amount paid in April 2005

default payment Binary {0, 1} 0 Whether or not the client face the default situation
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Defendant's answers to the COMPAS screening survey are used to generate the recidivism risk scores. The data have
been used for crime recidivism risk prediction by a plethora of works (Appendix A). Risk of recidivism (denoted as COM-
PAS recid.) and Risk of violent recidivism (denoted as COMPAS viol. recid) subsets are most widely used in the literature.
The former has a classification task to predict if an individual is rearrested within 2 years after the first arrest. The latter
predicts if an individual is rearrested for a violent crime within 2 years.

Dataset characteristics
COMPAS recid. and COMPAS viol. recid. datasets contain 7,214 and 4,743 samples, respectively. Each defendant is
described by 52 attributes15 (31 categorical, 6 binary, 14 numerical, and a null attribute), as shown in Tables 8 and Table 17
(Appendix B). Missing data are a common phenomenon in both subsets. There are 6,395 rows (88.6%) containing miss-
ing values in the COMPAS recid. subset while this number in the COMPAS viol. revid. subset is 3,748 (79%). Based on
Angwin et al. (2016), we clean the dataset by removing the missing data, such as violent_recid = NULL or the change
date of a crime (attribute days_b_screening_arrest) was not within 30 days when he or she was arrested. The cleaned
datasets used in our analysis contain 6,172 (COMPAS recid.) and 4,020 (COMPAS viol. recid.) records.

Protected attributes
Typically, race is employed as the protected attribute. In both subsets, black and white are the main races. In the COM-
PAS recid. subset, the black:white ratio is 3,175:2,103 (51.4%:34%) (computed on the total number of defendants), while
this ratio in the COMPAS viol. recid. subset is 1,918:1,459 (47.7%:36.3%). Figure 15 describes the distribution of

FIGURE 13 Credit card clients: Bayesian network (class label: default payment, protected attributes: sex, marriage, education)
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defendants with respect to race attribute. The recidivism rate in the black defendants is higher than that of the white
defendants in both subsets.

Sex has been also considered as the protected attribute (Chakraborty, Majumder, et al., 2020; Diana et al., 2021; van
Berkel et al., 2021). The ratio male:female is 4,997:1,175 (81%:19%) in the COMPAS recid. subset, while this ratio in the
COMPAS viol. recid. subset is 3,179:841 (79.1%:20.9%).

Class attribute
The class attribute is two_year_recid � 0,1f g indicating whether an individual will be rearrested within 2 years (1) or
not (0). The positive class is 1. The COMPAS recid. subset is fairly balanced with an IR 1 : 1:20 (positive:negative) while
the COMPAS viol. recid. subset is imbalanced with an IR 1 : 5:17.

Bayesian network
To generate the BN, we remove the temporal attributes such as screening_date (the date on which the risk of recidivism
score was given), in_custody (the date on which individual was brought into custody), and several ID-related attributes.
A new attribute juv_crime is computed by the sum of the juvenile felony count ( juv_fel_count) and the juvenile misde-
meanor count ( juv_misd_count) and the juvenile other offenses count ( juv_other_count). We transform the numerical
attributes into the categorical type: prior offenses count priors_count = {0, 1–5, >5}; the juvenile felony count
juv_crime = {0, >0}. Figure 16 and Figure 17 are the BNs of the COMPAS dataset. The class label two_year_recid = {0,
1} is assigned as a leaf node. It shows the dependency of many attributes such as sex, age category (age_cat) on prior
offenses count (priors_count) feature. For instance, the number of convictions directly affects the frequency of recidi-
vism, as shown in Figure 18. If a defendant has a long history of convictions, his probability of recidivism is higher,
especially when the number of convictions is more than 27 times, the recidivism probability is almost 100%.

Interestingly, score_text attribute (defines the category of the recidivism score) has many ingoing and outgoing edges
as depicted in Figure 17. To clarify this phenomenon, we investigate the distribution of age, recidivism score (score_text)
with respect to race, in Figure 19. The majority of recidivists are under the age of 30. In the recidivist group, the number
of black criminals is four times and two times more than that of white criminals with a high recidivism score and
medium recidivism score, respectively. In the group of defendants with a low recidivism score, the distribution of the
race is balanced.

3.2.2 | Communities and Crime dataset

The Communities and Crime16 dataset (Dheeru & Karra Taniskidou, 2017) was a small dataset containing the socioeco-
nomic data from 46 states of the United States in 1990 (the US Census). The law enforcement data come from the 1990
US LEMAS survey, and crime data come from the 1995 FBI Uniform Crime Reporting program. The goal is to predict
the total number of violent crimes per 100 thousand population. Many researchers are investigating the dataset in their
experiments (Appendix A).

≤

FIGURE 14 Credit card clients: Relationship between the credit limit balance and default payment
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Dataset characteristics
The dataset contains only 1994 samples; each instance is described by 127 attributes (4 categorical and 123 numerical
attributes). A description of attributes17 is illustrated in Tables 9, 18, and 19 (Appendix B).

There is a very high proportion (84%) of missing values in 25 attributes, as demonstrated in Table 19. Based on the
suggestions from the literature (Calders et al., 2013; Heidari et al., 2018), we remove all columns containing missing
values. We create a new binary class label namely class based on ViolentCrimesPerPop attribute (the total number of
violent crimes per 100,000 population). As illustrated in the related work (Kearns et al., 2018), a label “high-crime” is
set if the crime rate of the communities (possitive class) is greater than 0.7, otherwise, “low-crime” is given. The ratio of
high-crime:low-crime is: 122:1,872 (6.1%:93.9%). Therefore, the dataset is very imbalanced with an IR 1 : 15:34.

Protected attributes
In the literature (Kamiran et al., 2013; Kamishima et al., 2012), typically, researchers derive a new attribute, namely
Black, which is considered as the protected attribute, to divide the communities according to race by thresholding the
attribute racepctblack (the percentage of the population that is African American) at 0.06. The ratio of black:non-black
is 1038:956 (52.1%:47.9%). The interesting point in the data is that 94.3% (115/122) of the class “high-crime” are commu-
nities dominated by blacks.

Bayesian network
The dataset contains 122 numerical attributes normalized in the range of 0,1ð Þ, which is not competent to the
BN. Hence, we use the median value 0.5 as a threshold to transform these attributes into categorical with two values

TABLE 8 COMPAS recid: attributes characteristics

Attributes Type Values #Missing values Description

sex Binary {Male, Female} 0 Sex

age Numerical [18–96] 0 Age in years

age_cat Categorical 3 0 Age category

race Categorical 6 0 Race

juv_fel_count Numerical [0–20] 0 The juvenile felony count

juv_misd_count Numerical [0–13] 0 The juvenile misdemeanor count

juv_other_count Numerical [0–17] 0 The juvenile other offenses count

priors_count Numerical [0–38] 0 The prior offenses count

c_charge_degree Binary {F, M} 0 Charge degree of original crime

score_text Categorical 3 0 ProPublica-defined category of decile score

v_score_text Categorical 3 0 ProPublica-defined category of v_decile_score

two_year_recid Binary {0, 1} 0 Whether the defendant is rearrested within 2 years

Abbreviation: COMPAS, Correctional Offender Management Profiling for Alternative Sanctions.

- -
(a) (b)

FIGURE 15 COMPAS: distribution of two-year recidivism with respect to race. COMPAS, Correctional Offender Management Profiling

for Alternative Sanctions
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≤ 0:5, > 0:5f g. Besides, to ensure the visibility of the chart and the computation time, we use 21 attributes that have a
high correlation (at a threshold of 0.25) with the class label. The BN is visualized in Figure 20. In which, the percentage
of kids born to never married (PctIlleg) and the percentage of kids in family housing with two parents (PctKids2Par) have
a direct impact on the class label and the race. Looking into the dataset, we discover that 92.4% of the communities are
dominated by black people, where the percentage of kids in family housing with two parents less than 50%), while only
55.6% of the communities are dominated by black people, where the percentage of kids in family housing with two par-
ents greater than 50%.

Summary of the criminological datasets
In summary, the criminological datasets were only surveyed in the United States.

Race and sex are considered as protected attributes, with race being the most prevalent protected attribute. Historical
bias with respect to race has been detected in the data, but comprises a challenge for ML models. Furthermore, the
datasets consists of many attributes (the richer description among all datasets, see Table 1); hence, a careful selection of
attributes for fairness-aware learning is required.

FIGURE 16 COMPAS recid.: Bayesian network (class label: two_year_recid, protected attributes: race, sex). COMPAS, Correctional

Offender Management Profiling for Alternative Sanctions

FIGURE 17 COMPAS viol. recid.: Bayesian network (class label: two_year_recid, protected attributes: race, sex). COMPAS, Correctional

Offender Management Profiling for Alternative Sanctions
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3.3 | Healthcare and social datasets

3.3.1 | Diabetes dataset

The diabetes18 dataset (Strack et al., 2014) describes the clinical care at 130 US hospitals and integrated delivery net-
works from 1999 to 2008. The classification task is to predict whether a patient will readmit within 30 days. The dataset
is investigated in several studies (Appendix A).

Dataset characteristics
The dataset contains 101,766 patients described by 50 attributes (10 numerical, 7 binary and 33 categorical). Character-
istics of all attributes19 are summarized in Tables 10 and 20 (in Appendix B). The attributes encounter_id and pat-
ient_nbr should not be considered in the learning tasks since they are the ID of the patients. Typically, weight,
payer_code, medical_specialty attributes are removed because they contains at least 40% of missing values. Furthermore,
we eliminate the missing values in race, diag_1, diag_2, diag_3 columns. The class label readmitted contains 54,864
rows with “no record of readmission,” hence, these rows should be clean. The clean version of the dataset contains
45,715 records.

Protected attributes
Typically Gender = {male, female} is chosen as the protected attribute. The ratio of male:female is 20,653:25,062
(45.2%:54.8%). The ratio of males or females who have to readmit hospital in less than 30 days is approximately 24%.

Class attribute
The class attribute is readmitted � <30, > 30f g indicating whether a patient will readmit within 30 days. The positive
class is “<30.” The dataset is imbalanced with an IR 1 : 3:13 (positive:negative).

- -
(a) (b)

FIGURE 18 COMPAS: relationship between recidivism and priors count. COMPAS, Correctional Offender Management Profiling for

Alternative Sanctions

FIGURE 19 COMPAS recid.: distribution of recidivism score, age with respect to race. COMPAS, Correctional Offender Management

Profiling for Alternative Sanctions
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Bayesian network
To prepare the dataset for BN generating process, we encode the attributes: age = {<40, 40–59, 60–79, 80–99};
time_in_hospital = {≤5, >5}; num_lab_procedures = {≤50, 50}; num_procedures = {≤1, >1}; number_outpatient = {0,
>0}; num_medications = {≤15, >15}; number_emergency = {0, >0}; number_inpatient = {0, >0}; number_diagnoses = {0,
>0}. To reduce the computation time, we use 17 attributes that have an absolute correlation coefficient higher than
0.005 with gender and readmitted attributes to generate the BN in Figure 21.

The class label readmitted is directly conditionally dependent on the number of outpatient visits of the patient in
the year preceding the encounter (number_outpatient). The attribute number_outpatient also has an impact on eight
other features. Interestingly, there is no connection between the protected attribute gender and the class label.

3.3.2 | Ricci dataset

The Ricci20 dataset was generated by the Ricci v.DeStefano case (Supreme Court of the United States, 2009), in which
they investigated the results of a promotion exam within a fire department in November 2003 and December 2003.
Although it is a relatively small dataset, it has been employed for fairness-aware classification tasks in many studies
(Appendix A). The classification task is to predict whether an individual obtains a promotion based on the exam
results.

Dataset characteristics
The dataset consists of 118 samples, where each sample is characterized by 6 attributes (3 numerical and 3 binary attri-
butes), as presented in Table 11.

TABLE 9 Communities and crime: Attributes characteristics

Attributes Type Values
#Missing
values Description

racepctblack Numerical [0.0–1.0] 0 The percentage of population that is African American

pctWInvInc Numerical [0.0–1.0] 0 The percentage of households with investment/rent income in 1989

pctWPubAsst Numerical [0.0–1.0] 0 The percentage of households with public assistance income in 1989

NumUnderPov Numerical [0.0–1.0] 0 The number of people under the poverty level

PctPopUnderPov Numerical [0.0–1.0] 0 The percentage of people under the poverty level

PctUnemployed Numerical [0.0–1.0] 0 The percentage of people 16 and over, in the labor force, and unemployed

MalePctDivorce Numerical [0.0–1.0] 0 The percentage of males who are divorced

FemalePctDiv Numerical [0.0–1.0] 0 The percentage of females who are divorced

TotalPctDiv Numerical [0.0–1.0] 0 The percentage of population who are divorced

PersPerFam Numerical [0.0–1.0] 0 The mean number of people per family

PctKids2Par Numerical [0.0–1.0] 0 The percentage of kids in family housing with two parents

PctYoungKids2Par Numerical [0.0–1.0] 0 The percentage of kids 4 and under in two parent households

PctTeen2Par Numerical [0.0–1.0] 0 The percentage of kids age 12–17 in 2 parent households

NumIlleg Numerical [0.0–1.0] 0 The number of kids born to never married

PctIlleg Numerical [0.0–1.0] 0 The percentage of kids born to never married

PctPersOwnOccup Numerical [0.0–1.0] 0 The percentage of people in owner occupied households

HousVacant Numerical [0.0–1.0] 0 The number of vacant households

PctHousOwnOcc Numerical [0.0–1.0] 0 The percentage of households owner occupied

PctVacantBoarded Numerical [0.0–1.0] 0 The percentage of vacant housing that is boarded up

NumInShelters Numerical [0.0–1.0] 0 The number of people in homeless shelters

NumStreet Numerical [0.0–1.0] 0 The number of homeless people counted in the street

ViolentCrimesPerPop Numerical [0.0–1.0] 0 The total number of violent crimes per 100,000 population
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Protected attributes
In this dataset, only attribute race can be used as a protected attribute. Race contains three values (black, white, and his-
panic). As described in the literature, “black” and “hispanic” are grouped as “non-white” community. The ratio of
white:non-white is 68:50 (57.6%:42.4%).

Class attribute
The class attribute is promoted � True,Falsef g revealing whether an individual achieves a promotion or not. The posi-
tive class is “True.” The dataset is almost balanced with an IR 1 : 1:11 (positive:negative).

Bayesian network
We encode 3 numerical attributes oral, written, and combine as following: oral = {<70, ≥70}, written = {<70, ≥70}, com-
bine = {<70, ≥70}. The BN of the Ricci dataset is demonstrated in Figure 22.

It is easy to observe that the combined grade (attribute combine) has a direct effect on the class label (promoted).
Figure 23 illustrates the relationship between the combined grade and the promotion status. Hundred percentage of
people whose combined oral and written exams are equal to or above 70 are promoted. Besides, as depicted in
Figure 24, the number of promotions is granted for white people is higher than that for non-white people. The opposite
trend is true in the group of candidates with no promotion.

Summary of the healthcare and social datasets
In summary, the datasets in healthcare and society domains were only surveyed in the United States. Race and gender
are considered as protected attributes. In terms of class imbalance, these datasets are less imbalanced than datasets in
other domains, although the Diabetes dataset is still imbalanced. Interestingly, there is no connection between the
protected attribute and the class label in both two datasets, which implies fairness can be observed in the results of
fairness-aware ML models.

3.4 | Educational datasets

3.4.1 | Student performance dataset

The student performance dataset (Cortez & Silva, 2008) described students' achievement in the secondary education of
two Portuguese schools in 2005–2006 with two distinct subjects: Mathematics and Portuguese.21 The regression task is
to predict the final year grade of the students. It is investigated in several researches (Appendix A) with fairness-aware
regression and clustering approaches.

Dataset characteristics
The dataset contains information of 395 (Mathematics subject) and 649 (Portuguese subject) students described by
33 attributes (4 categorical, 13 binary and 16 numerical attributes). Characteristics of all attributes are described in
Table 12. To simply the classification problem, we create a class label based on attribute G3, class = {Low, High},
corresponding to G3 = {<10, ≥10}. The positive class is “High.” The dataset is imbalanced with imbalance ratios 1:2.04
(Mathematics subject) and 1:5.09 (Portuguese subject).

Protected attributes
Typically, in the literature, sex is considered as the protected attribute. In the work of (Deepak & Abraham, 2020;
Kearns et al., 2019), they also select age as the protected attribute. Especially, in the research (Kearns et al., 2019), they
consider atttributes romatic (relationship) and dalc, walc (alcohol consumption) as the protected attributes. However,
because of the unpopularity of these attributes, we did not consider those within the scope of this paper.

• sex = {male, female}: the dataset is dominated by female students. The ratios of male:female are 208:187
(52.7%:47.3%) and 383:266 (59%:41%) for the Mathematics subject and Portuguese subject, respectively.

• age = {<18, ≥18}: young students (less than 18 years old) are the majority with the ratios of “<18”:“≥18” are 284:111
(71.9%: 28.1%) and 468:181 (72.1%:27.9%) for the Mathematics subject and Portuguese subject, respectively.
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Bayesian network
We perform a transformation of numerical variables: the number of school absences, absences = {0–5, 6–20, >20}; grade
G1 = {<10, ≥10}; G2 = {<10, ≥10}. Due to the computation of the BN generator and the correlation coefficient with the
class label (with a threshold of 0.02), we select 26 variables for the network. The BNs of the dataset on Portuguese and
Mathematics subjects are visualized in Figures 25 and 26, respectively.

FIGURE 20 Communities and Crime: Bayesian network (class label: class, protected attribute: black)
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The class label attribute is conditionally dependent on the grade G2 in both subsets (Mathematics and Portuguese
subjects). This is explained by a very high correlation coefficient (above 90%) between G2 and G3 variables. In addition,
we investigate the distribution of the final grade G3 on sex because the attribute sex has an indirect relationship with
the class label. Figure 27 reveals that the male students tend to receive high scores in the Portuguese subject, while the
scores of Math are relatively evenly distributed across both sexes.

3.4.2 | Open University Learning Analytics dataset

The Open University Learning Analytics (OULAD) dataset22 was collected from the OU analysis project (Kuzilek
et al., 2017) of The Open University (England) in 2013–2014. The dataset contains information of students and their
activities in the virtual learning environment (VLE) for seven courses. The dataset is investigated in several papers
(Appendix A), on fairness-aware problems. The goal is to predict the success of students.

Dataset characteristics
The dataset contains information of 32,593 students characterized by 12 attributes (7 categorical, 2 binary and 3 numeri-
cal attributes). An overview of all attributes is illustrated in Table 13. Attribute id_student should be ignored in the anal-
ysis. Typically, in the related work, they consider the prediction task on the class label final_result = {pass, fail}.
Therefore, we investigate the cleaned dataset with 21,562 instances after removing the missing values and rows with
final_result = withdrawn. “Pass” is the positive class. The ratio of pass:fail is 14,655:6,907 (68%:32%). In other words,
the dataset is imbalanced with the IR is 2.12:1 (positive:negative).

TABLE 10 Diabetes: Attributes characteristics

Attributes Type Values
#Missing
values Description

race Categorical 6 2273 Race (Caucasian, Asian, African American, Hispanic, and other)

gender Categorical 3 0 Gender (male, female, and unknown/invalid)

age Categorical 10 0 Grouped in 10-year intervals

time_in_hospital Numerical [1–14] 0 The number of days between admission and discharge

num_procedures Numerical [0–6] 0 The number of procedures (other than lab tests) performed during the
encounter

num_medications Numerical [1–81] 0 The number of distinct generic names administered during the
encounter

number_outpatient Numerical [0–42] 0 The number of outpatient visits of the patient in the year preceding the
encounter

number_emergency Numerical [0–76] 0 The number of emergency visits of the patient in the year preceding the
encounter

number_inpatient Numerical [0–21] 0 The number of inpatient visits of the patient in the year preceding the
encounter

A1Cresult Categorical 4 0 The range of the results or if the test was not taken

metformin Categorical 4 0 Whether the drug was prescribed or there was a change in the dosage

chlorpropamide Categorical 4 0 Whether the drug was prescribed or there was a change in the dosage

glipizide Categorical 4 0 Whether the drug was prescribed or there was a change in the dosage

rosiglitazone Categorical 4 0 Whether the drug was prescribed or there was a change in the dosage

acarbose Categorical 4 0 Whether the drug was prescribed or there was a change in the dosage

miglitol Categorical 4 0 Whether the drug was prescribed or there was a change in the dosage

diabetesMed Binary {Yes, No} 0 Was there any diabetic medication prescribed?

readmitted Categorical 3 0 The number of days to inpatient readmission (No, < 30, > 30)
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Protected attributes
Attribute gender = {male, female} is considered as the protected attribute, in the literature. Male is the majority group
with the ratio male:female is 11,568:9,994 (56.6%:46.4%).

Bayesian network
The numerical attributes are encoded for generating the BN: num_of_prev_attempts = {0, >0}, stu-
died_credits = {≤100, >100}. The network is depicted in Figure 28. The final result attribute is directly condi-
tionally dependent on the highest education level (highest_education) and the number times the student has
attempted the module (num_of_prev_attempts) attributes, while gender has a more negligible effect on the
outcome.

We perform the analysis on the relationship of the highest education, number of previous attempts, and the
final result for each gender. As demonstrated in Figure 29, students have a higher probability of failing when they
tried to attempt the exam many times in the past. The ratio of male students having the highest education is “A-
level or equivalent” or “higher education (HE) qualification” is around 1.5 times higher than that of female
students.

FIGURE 21 Diabetes: Bayesian network (class label: readmitted, protected attribute: gender)

TABLE 11 Ricci: attributes characteristics

Attributes Type Values #Missing values Description

Position Binary {Lieutenant, Captain} 0 The desired promotion

Oral Numerical [40.83–92.08] 0 The oral exam score

Written Numerical [46–95] 0 The written exam score

Race Binary {White, Non-White} 0 Race

Combine Numerical [45.93–92.80] 0 The combined score (the written exam gets 60% weight)

Promoted Binary {True, False} 0 Whether an individual obtains a promotion or not
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3.4.3 | Law school dataset

The Law school23 dataset (Wightman, 1998) was conducted by a Law School Admission Council (LSAC) survey across
163 law schools in the United States in 1991. The dataset contains the law school admission records. The prediction task
is to predict whether a candidate would pass the bar exam or predict a student's first-year average grade. The dataset is
investigated in a variety of studies (Appendix A).

Dataset characteristics
The dataset contains information of 20,798 students characterized by 12 attributes (3 categorical, 3 binary and 6 numeri-
cal attributes). An overview of all attributes is depicted in Table 14.

FIGURE 22 Ricci: Bayesian network (class label: promoted, protected attribute: race)

≥

FIGURE 23 Ricci: relationship between combined score and promotion status
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Protected attributes
In the literature, race (Bechavod & Ligett, 2017; Chzhen et al., 2020; Kearns et al., 2019; Kusner et al., 2017; Lahoti
et al., 2020; Ruoss et al., 2020; Russell et al., 2017; Yang et al., 2020) and male (Berk et al., 2017; Kearns et al., 2019;
Kusner et al., 2017; Lahoti et al., 2020; Yang et al., 2020) are considered as the protected attributes.

• male = {1, 0}. Male is the majority group. The ratio of male (1):female (0) is 11,675:9,123 (56.1%:43.9%).
• race = {white, black, Hispanic, Asian, other}. As introduced in the related work, we encode race = {white, non-white}

based on the original attribute. Non-white is the minority group with the ratio white:non-white is
17,491:3307 (84%:16%).

Class attribute
The class label pass_bar = {0, 1} is used for the classification task. The positive class is 1 � pass. The dataset is imbal-
anced with an imbalance ratio 8.07:1 (positive:negative).

Bayesian network
To generate the BN, we encode the numerical attributes as follows: decile1b = {≤5, >5}, decile3 = {≤5, >5}, lsat = {37,
>37}, ugpa = {<3.3, ≥3.3}, zgpa = {≤0, >0}, zfygpa = {≤0, >0}. The BN is visualized in Figure 30.

It is easy to observe that the bar exam's result is conditionally dependent on the law school admission test (LSAT)
score, undergraduate grade point average (UGPA) and Race. We discover that 92.1% of white students (16,114/17,491)
pass the bar exam, while this ratio in non-white students is only 72.3%. In general, the percentage of students who pas-
sed the bar exam is increased in proportion to the LSAT and UGPA scores, which is depicted in Figure 31.

Summary of the educational datasets
The educational datasets were collected in many countries around the world. Gender is the most popular protected
attribute, followed by age and race. The typical learning task is to predict students' outcome or grades. Therefore,
many ML tasks are applied to the datasets, such as classification, regression, or clustering. All datasets are imbal-
anced with very different imbalance ratios in terms of class imbalance. The bias is observed in the datasets w.r.t
protected attributes, that is, race, sex; hence, fairness-aware algorithms need to take into account these attributes
to achieve fairness in education.

4 | EXPERIMENTAL EVALUATION

The goal of our survey is to summarize the different datasets on fairness-aware learning in terms of their
application domain, fairness-aware, and learning-related challenges. An experimental evaluation of the different
fairness-aware learning methods (pre-,in-and post-processing) is beyond the scope of this survey. However, in
order to characterize the different datasets in terms of the difficulty of the fairness-aware learning task, in this sec-
tion, we present a short fairness-versus-predictive performance evaluation24 using a popular classification method
(namely, logistic regression).

FIGURE 24 Ricci: distribution of combined score, position and promotion decision with respect to race
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4.1 | Evaluation setup

4.1.1 | Predictive model

As our classification model, we use logistic regression (Cox, 1958), a statistical model using a logistic function to model a
binary dependent variable. To simplify the task, we apply the logistic regression model to the binary classification
problem.

TABLE 12 Student performance: attributes characteristics

Attributes Type Values
#Missing
values Description

school Binary {GP, MS} 0 The student's school (“GP”: Gabriel Pereira, “MS”: Mousinho da
Silveira)

sex Binary {Male, Female} 0 Sex

age Numerical [15–22] 0 Age (in years)

address Binary {U, R} 0 The address type (“U”: urban, “R”:rural)

famsize Binary {LE3, GT3} 0 The family size (“LE3”: less or equal to 3, “GT3”: greater than 3)

Pstatus Binary {T, A} 0 The parent's cohabitation status (“T”: living together, “A”: apart)

Medu Numerical [0–4] 0 Mother's education

Fedu Numerical [0–4] 0 Father's education

Mjob Categorical 5 0 Mother's job

Fjob Categorical 5 0 Father's job

reason Categorical 4 0 The reason to choose this school

guardian Categorical 3 0 The student's guardian (mother, father, other)

traveltime Numerical [1–4] 0 The travel time from home to school

studytime Numerical [1–4] 0 The weekly study time

failures Numerical [0–3] 0 The number of past class failures

schoolsup Binary {Yes, No} 0 Is there an extra educational support?

famsup Binary {Yes, No} 0 Is there any family educational support?

paid Binary {Yes, No} 0 Is there an extra paid classes within the course subject (Math or
Portuguese)

activities Binary {Yes, No} 0 Are there extra-curricular activities?

nursery Binary {Yes, No} 0 Did the student attend a nursery school?

higher Binary {Yes, No} 0 Does the student want to take a higher education?

internet Binary {Yes, No} 0 Does the student have an Internet access at home?

romantic Binary {Yes, No} 0 Does the student have a romantic relationship with anyone?

famrel Numerical [1–5] 0 The quality of family relationships (from 1: very bad to 5: excellent)

freetime Numerical [1–5] 0 Free time after school (from 1: very low to 5: very high)

goout Numerical [1–5] 0 How often does the student go out with friends? (from 1: very low to 5:
very high)

Dalc Numerical [1–5] 0 The workday alcohol consumption (from 1: very low to 5: very high)

Walc Numerical [1–5] 0 The weekend alcohol consumption (from 1: very low to 5: very high)

health Numerical [1–5] 0 The current health status (from 1: very bad to 5:very good)

absences Numerical [0–32] 0 The number of school absences

G1 Numerical [0–19] 0 The first period grade

G2 Numerical [0–19] 0 The second period grade

G3 Numerical [0–19] 0 The final grade
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4.1.2 | Metrics

Based on the confusion matrix in Figure 32 (in which, prot and non-prot stand for protected, non-protected, respectively),
we report the performance of the predictive model on the following measures:

• Accuracy

Accuracy¼ TPþTN
TPþTNþFPþFN

: ð8Þ
• Balanced accuracy

Balanced accuracy¼ 1
2
� TP

TPþFN
þ TN
TNþFP

� �
: ð9Þ

• True positive rate (TPR) on protected group

FIGURE 25 Student performance—Portuguese subject: Bayesian network (class label: class, protected attributes: age, sex)
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TPRprot ¼ TPprot

TPprotþFNprot
: ð10Þ

• TPR on non-protected group

TPRnon-prot ¼ TPnon-prot

TPnon-protþFNnon-prot
: ð11Þ

• True negative rate (TNR) on protected group

TNRprot ¼ TNprot

TNprotþFPprot
: ð12Þ

• TNR on non-protected group

FIGURE 26 Student performance—Mathematics subject: Bayesian network (class label: class, protected attributes: age, sex)

(a) (b)

FIGURE 27 Student performance: Distribution of the final grade G3 with respect to sex
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TNRnon-prot ¼ TNnon-prot

TNnon-protþFPnon-prot
: ð13Þ

• SP (Equation 4).
• Equalized odds (Equation 6).
• ABROCA (Equation 7).

4.1.3 | Training/test set splitting

The ratio of training set and test set in our experiment is 70%:30% (single split) applied for each dataset.

TABLE 13 OULAD: attributes characteristics

Attributes Type Values
#Missing
values Description

code_module Categorical 7 0 The identification code of the module on which the student
is registered

code_presentation Categorical 4 0 The identification code of the presentation on which the
student is registered

id_student Numerical [3733 - 2,716,795] 0 A unique identification number for the student

gender Binary {Male, Female} 0 Gender

region Categorical 13 0 The geographic region

highest_education Categorical 5 0 The highest student education level

imd_band Categorical 10 1111 The index of multiple deprivation (IMD) band of the place
where the student lived

age_band Categorical 3 0 The category of the student's age

num_of_prev_attempts Numerical [0–6] 0 The number times the student has attempted this module

studied_credits Numerical [30–655] 0 The total number of credits for the modules the student is
currently studying

disability Binary {Yes, No} 0 Whether the student has declared a disability

final_result Categorical 4 0 The student's final result (in the module-presentation)

Abbreviation: OULAD, Open University Learning Analytics dataset.

FIGURE 28 OULAD: Bayesian network (class label: final_result, protected attributes: gender)
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4.2 | Experimental results

Table 15 describes the performance of the logistic regression model on all datasets. We believe that our experimental
results can be considered as the baseline for the researchers' future studies.

In general, a significant difference in terms of predictive performance and fairness measures is observed between
the datasets. In particular, the Ricci dataset is an exception where the performance of the predictive model reaches the
peak regarding both accuracy and fairness measures. Apart from that, the logistic regression model shows the best per-
formance on the Communities and Crime dataset in terms of accuracy. The worst accuracy is seen in the result of the
model on the OULAD dataset. Regarding balanced accuracy, the Student—Mathematics is the dataset showing the best
result of the predictive model, followed by the Student—Portuguese and the Dutch census datasets. Logistic regression
model shows the worst balanced accuracy on the Credit card clients, Diabetes, and OULAD datasets.

Regarding the SP measure, in general, 10/15 datasets have an absolute value of SP less than 0.1. The Diabetes, Credit
card clients, and OULAD datasets have the best value (0.0) of SP while the Bank marketing dataset has the worst value.
Interestingly, in terms of the equalized odds measure, the best value (0.0) is observed in four datasets (Credit card cli-
ents, Diabetes, OULAD, and Ricci). The predictive model results in the worst performance on the COMPAS recid. dataset
with a high value of equalized odds, followed by the Law school and the Communities and Crime datasets.

In addition, we plot the ABROCA slicing of all datasets in Figure 33. In the Figure, the red ROC curve represents
the non-protected group (e.g., Male) while the blue ROC is the curve of the protected group (e.g., Female). The best
value of the ABROCA is seen in the Ricci dataset, followed by the OULAD and the KDD Census-Income datasets. The
worst cases are the German credit and the COMPAS datasets.

FIGURE 29 OULAD: Distribution of the number of previous attempts, the highest education and the final result with respect to gender

TABLE 14 Law schoool: Attributes characteristics

Attributes Type Values #Missing values Description

decile1b Numerical [1.0–10.0] 0 The student's decile in the school given his grades in Year 1

decile3 Numerical [1.0–10.0] 0 The student's decile in the school given his grades in Year 3

lsat Numerical [11.0–48.0] 0 The student's LSAT score

ugpa Numerical [1.5–4.0] 0 The student's undergraduate GPA

zfygpa Numerical [�3.35–3.48] 0 The first year law school GPA

zgpa Numerical [�6.44–4.01] 0 The cumulative law school GPA

fulltime Binary {1, 2} 0 Whether the student will work full-time or part-time

fam_inc Categorical 5 0 The student's family income bracket

male Binary {0, 1} 0 Whether the student is a male or female

tier Categorical 6 0 Tier

race Categorical 6 0 Race

pass_bar Binary {0, 1} 0 Whether the student passed the bar exam on the first try
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5 | OPEN ISSUES ON DATASETS FOR FAIRNESS-AWARE ML

In the previous sections, we have summarized the most popular datasets for fairness-aware learning. In this section, we
extend the discussion to also include recently proposed (and therefore, not adequately exploited) real datasets
(Section 5.1), synthetic datasets (Section 5.2 and datasets for sequential decision-making (Section 5.3). We advocate that
the community should focus more on new datasets representing diverse fairness scenarios, in parallel to new methods
and algorithms for fairness-aware learning.

FIGURE 30 Law school: Bayesian network (class label: pass_bar, protected attributes: male, race)

(a) (b)

FIGURE 31 Law school: The percentage of students that passed the bar exam by LSAT and UGPA scores. LSAT, law school admission

test; UGPA, undergraduate grade point average
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5.1 | Adult reconstruction and American Community Survey Public Use Microdata
Sample datasets

The Adult reconstruction dataset25 (Ding et al., 2021) is a new dataset reconstructed from the Current Population Sur-
vey data (Sarah Flood et al., 2020) from 1994. The dataset consists of 49,531 instances with 14 attributes, in which 13 of
15 attributes of the Adult dataset (see Section 3.1.1) are matched. Differently from the vanilla Adult dataset, the class
attribute income is now represented as a continuous variable. A possible prediction task of the Adult reconstruction
dataset is to decide whether an individual earns annually more than 50,000 US dollars. Apart from the Adult recon-
struction dataset, (Ding et al., 2021) introduce further datasets based on the American Community Survey (ACS) Public
Use Microdata Sample (PUMS)26 with five new prediction tasks with respect to income, public health insurance, residen-
tial address, employment, and commuting time to workplace.

For our study, we focus on a particular state (California) for a specific period (2007–2019), using the provided tool
(Ding et al., 2021) and income as the prediction task. We consider two protected attributes: Sex = {male, female} and
race = {white, non-white}, with “female” and “non-white” being the corresponding protected values.

In Figure 34, we depict the proportion of people in each income class over time split per gender and race. It is easy
to observe a lower representation of the protected groups (female, non-white) over the years. In relation to the popula-
tion size, which is shown in Figure 35, the number of people with an income above 50K$ gradually increases in both
sexes. However, the growth rate in the male group is slightly higher than that in the female group.

The ACS PUMS datasets were only recently proposed (Ding et al., 2021). We believe they comprise a very interesting col-
lection since they also contain spatial and temporal information, albeit only for the United States, and can therefore be used
to analyze the dynamics of discrimination across space and time. As a preliminary investigation, in Figure 36, we illustrate
the gender percentage differences in the positive class, that is, income over 50 K$, for different US states in 2011 and 2019.
Many states have low gender differences (depicted in green) in 2011. However, the gender differences increase over the years,
as seen in 2019. A further investigation of the potential effect of spatial and temporal parameters is of course required.

5.2 | Synthetic datasets

Apart from using real-world datasets, it is typical for ML evaluation (Ntoutsi et al., 2019) to also employ synthetic data
which allow for evaluation under different learning complexity scenarios. Synthetic datasets have been also used for
the evaluation of fairness-aware learning methods (D'Amour et al., 2020; Loh et al., 2019; Reddy et al., 2021; Tu
et al., 2020; Zafar, Valera, Gomez Rodriguez, & Gummadi, 2017) to produce desired testing scenarios, which may not
yet be captured by the existing real-world datasets, but are essential for the development and evaluation of theoretically
sound fair algorithms.

For example, the works (D'Amour et al., 2020; Tu et al., 2020) study the long-term effects of a currently fair
decision-making system and therefore require data that capture the decision of the classifier continuously through time
and change the underlying population accordingly. To this end, they simulate dataset changes over time.

FIGURE 32 The confusion matrix, including protected/ non-protected groups
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(a) Adult (b) KDD Census-Income (c) German credit

(d) Dutch census (e) Bank marketing (f) Credit card clients
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(j) Diabetes (k) Ricci (l) Student–Mathematics

(m) Student-Portuguese (n) OULAD (o) Law school

FIGURE 33 ABROCA slice plot on datasets. ABROCA, Absolute Between-ROC Area
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In a different direction, (Iosifidis & Ntoutsi, 2018) use synthetic data augmentation to increase the representation of
the underrepresented protected groups in the overall population. The synthetic instances are generated via synthetic
minority over-sampling technique (SMOTE) (Chawla et al., 2002) by interpolating between original instances.

5.3 | Sequential datasets

Although algorithmic fairness in decision-making has been mostly studied in static/batch settings, increasing attention
has been gained in sequential decision-making environments (Heidari & Krause, 2018; Liu et al., 2018; Wen
et al., 2021), where a sequence of instances possibly infinitely arrives continuously over time which widely exists in
many real-world applications such as when making decisions about lending and employment. In contrast to the batch-
based static environments, sequential decision-making requires the operating model processes each new individual at

FIGURE 34 ACS PUMS dataset (California, 2007–2019): proportion of people with an income above 50K$ in each group over the years.

ACS PUMS, American Community Survey Public Use Microdata Sample
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FIGURE 35 ACS PUMS dataset (California, 2007–2019): the distribution of people with respect to sex and income over the years. ACS

PUMS, American Community Survey Public Use Microdata Sample
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each time step while making an irrevocable decision based on observations made so far (W. Zhang & Bifet, 2020;
W. Zhang & Ntoutsi, 2019). Often times, the processing also needs to be on the fly and without the need for storage and
reprocessing (W. Zhang et al., 2021).

The aforementioned unique characteristics require the datasets being used for fair sequential decision-making stud-
ies fulfill these additional demanding requirements. Among the previously discussed datasets, the Adult (Kohavi, 1996)
and Census (Asuncion & Newman, 2007) are rendered as discriminated data streams to fit for this purpose by
processing the individuals in sequence (W. Zhang & Bifet, 2020). In addition, the datasets are ordered based on the sen-
sitive attribute of their particular task at hand before sequential processing to further simulating the potential concept
and fairness drifts in the online settings (W. Zhang et al., 2021). Relevantly, the Crime and Communities dataset
(Asuncion & Newman, 2007) is also sequentially processed for sequential fairness-aware studies (Heidari &
Krause, 2018). However, sequential-friendly datasets, due to their magnified requirements, are still in scarce, albeit their
significance for the development of fair sequential models which are widely applicable in many real-world applications
(W. Zhang et al., 2019). A continuation on fair sequential datasets efforts is therefore required for a unified fairness-
aware research. The new Adult dataset(s) (see Section 5.1) might be suitable for sequential learning as they contain
temporal information (year of data collection).

More recently, the uncertainty due to censorship in fair sequential decision-making has also been researched
(W. Zhang & Weiss, 2021, 2022). Distinct from existing fairness studies assuming certainty on the class label by designed, this
line of works addresses fairness in the presence of uncertainty on the class label due to censorship. Take the motivating clini-
cal prediction therein as the example (e.g., SUPPORT dataset [Knaus et al., 1995]), whether the patient relapses/discharges
(event of interest) could be unknown for various reasons (e.g., loss to follow-up) leading to uncertainty on the class label,
that is, censorship (W. Zhang et al., 2016). This problem extends beyond the medical domain with examples in marketing
analytics (e.g., KKBox dataset; Kvamme et al., 2019]) and recidivism prediction instruments (e.g., ROSSI, Fox &
Carvalho, 2012; COMPAS dataset, Angwin et al., 2016). The censorship information, including survival time and an event
indicator, in addition to the observed features, is thus also included, which is normally excluded in fairness studies that do
not consider censorship. As the exclusion of censorship information could lead to important information loss and introduce
substantial bias (Wang et al., 2021), more attention on the censorship of fairness datasets is warranted.

Related to the topic of fairness, is the topic of explainability. Explainability tools can help debugging ML models
and uncover biased decision-making. For sequential decision-making, the notion of sequential counterfactuals
(Naumann & Ntoutsi, 2021) seems prominent as it takes into account longer-term consequences of feature-value
changes. The experiments were conducted on the Adult dataset; however, the fairness of the decisions was not investi-
gated. Further research in this direction is required.

6 | CONCLUSION AND OUTLOOK

There are several approaches and discussions that can be implemented in studies on fairness-aware ML. First, in this
survey, we investigate the tabular data as the most prevalent data representation. However, in practice, other data types
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FIGURE 36 ACS PUMS dataset: gender differences (%males–%females) in the positive class ( > 50K income) for different US states.
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such as text (Zhao et al., 2018) and images (Buolamwini & Gebru, 2018) are also used in fairness-aware ML problems.
Obviously, these data types are closely related to the domain, and the method of handling datasets is also very different
and specialized. This requires the fairness-aware algorithms to be tweaked to apply to different datasets.

Second, by generating the BN, we discover the relationship between attributes showing their conditional depen-
dence. The results from data analysis and experiments show that the bias may appear in the data itself and/or in the
outcome of predictive models. It is understandable that if a dataset contains bias and discrimination, it would be diffi-
cult for fairness-aware algorithms to find the trade-off between fairness requirement and performance. Furthermore,
based on our experimental results, a significant variation in outcomes between the datasets suggests that the fairness-
aware models need to be performed on the diverse datasets.

Third, bias and discrimination are the common problems of almost all domains in reality. In this paper, we study
the well-known datasets describing the important aspects of social life such as finance, education, healthcare, and crim-
inology. The definition of fairness, of course, is different across domains. It is not easy to evaluate the efficiency of
fairness-aware algorithms because they must be based on such fairness notions. Therefore, it is crucial and necessary to
select or define the appropriate fairness notions for each problem in each domain because there is no universal fairness
notion for every problem. This remains a major challenge for researchers.

Fourth, the selection of the protected attributes is also a matter of consideration. In the datasets surveyed in this
paper, gender (sex), race, age, and marriage are the prevalent protected attributes. The selection of one or more protec-
ted attributes for the experiment depends on many factors such as domain, problem, and the purpose of the experiment.
In our experiments, for each dataset, we only demonstrate the performance of the predictive model w.r.t one of the
most popular protected attributes. In addition, the identification and handling of “proxy” attributes is also an issue that
requires more research.

Fifth, collecting new datasets is always a requirement of data scientists. The surveyed datasets were all collected
quite a long time in the past with an average age of about 20 years. The oldest dataset was obtained 48 years ago, while
the newest dataset was identified from 7 years ago. Of course, the newer the data, the more up-to-date with the trends
of the modern society, so the analysis and application of fairness-aware algorithms on the new datasets will reflect the
manifestations of the social behaviors more realistic. On the other hand, the old datasets are of reference value in com-
paring and contrasting the movement and variation of fairness in the same or different domains. The datasets are col-
lected in the US and European countries where the data protection laws are in place. However, the general policies on
data quality or collection still need to be studied and proposed (Ntoutsi et al., 2020).

To conclude, fairness-aware ML has attracted many recently in various domains from criminology, healthcare,
finance to education. This paper reviews the most popular datasets used in fairness-aware ML researches. We explore
the relationship of the variables as well as analyze their correlation concerning protected attributes and the class label.
We believe our analysis will be the basis for developing frameworks or simulation environments to evaluate fairness-
aware algorithms. In another aspect, an excellent understanding of well-known datasets can also inspire researchers to
develop synthetic data generators because finding a suitable real-world dataset is never a simple task.
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multifairness has only recently been addressed (Abraham et al., 2020; Hébert-Johnson et al., 2018; Martinez
et al., 2020).

8 https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)
9 Table 3 describes attributes used in the Bayesian network.
10 https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
11 https://github.com/tailequy/fairness_dataset/tree/main/Dutch_census
12 https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
13 https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
14 https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
15 Table 8 describes attributes used in the Bayesian network and data analysis.
16 http://archive.ics.uci.edu/ml/datasets/communities+and+crime
17 Table 9 contains attributes used in the Bayesian network.
18 https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
19 Table 10 describes attributes used in the Bayesian network.
20 https://www.key2stats.com/data-set/view/690
21 https://archive.ics.uci.edu/ml/datasets/student+performance
22 https://analyse.kmi.open.ac.uk/open_dataset
23 https://github.com/tailequy/fairness_dataset/tree/main/Law_school
24 The source code is available at: https://github.com/tailequy/fairness_dataset
25 https://github.com/zykls/folktables/
26 https://www2.census.gov/programs-surveys/acs/data/pums/
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ders et al. (2013), Chzhen et al. (2020), Berk et al., 2017, Ruoss et al. (2020), Galhotra et al. (2021), Diana et al. (2021),
and Galhotra et al. (2021).

Diabetes dataset
Backurs et al. (2019), Chierichetti et al. (2017), and Mahabadi and Vakilian (2020), and Huang et al. (2019).

Ricci dataset
Feldman et al. (2015), Feldman (2015), Friedler et al. (2019), Ignatiev et al. (2020), Schelter et al. (2020), Valdivia et
al. (2021).

Student performance dataset
Deepak and Abraham (2020), Chzhen et al. (2020), Kearns et al. (2019), and Le Quy et al. (2021).
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OULAD dataset
Riazy and Simbeck (2019), Le Quy et al. (2021), and Riazy et al. (2020).

Law School dataset
Chzhen et al. (2020), Kearns et al. (2019), Kusner et al. (2017), Russell et al. (2017), Lahoti et al. (2020), Bechavod and
Ligett (2017), Berk et al. (2017), Yang et al. (2020), and Ruoss et al. (2020).

APPENDIX B: DATASETS' CHARACTERISTICS

TABLE 16 KDD Census‐Income: attributes characteristics

Attributes Type Values #Missing values Description

enroll‐in‐edu‐inst‐last‐wk Categorical 3 0 An individual enrolled in an
educational institute last week?

major‐industry Categorical 24 0 The major industry code

major‐occupation Categorical 15 0 The major occupation code

hispanic‐origin Categorical 9 1279 The Hispanic origin

member‐union Categorical 3 0 Member of a labor union

reason‐unemployment Categorical 6 0 The reason for unemployment

region‐previous Categorical 6 0 The region of previous residence

state‐previous Categorical 50 1038 The state of previous residence

migration‐code‐change‐in‐msa Categorical 10 149,642 Migration code‐change in MSA

migration‐code‐change‐in‐reg Categorical 9 149,642 Migration code‐change in region

migration‐code‐move‐within‐reg Categorical 10 149,642 Migration code‐move within region

live‐hour‐1‐year‐ago Categorical 3 0 Live in this house 1 year ago

migration‐prev‐res‐in‐sunbelt Categorical 4 149,642 Migration from the previous
residence in the sunbelt

country‐father Categorical 42 10,142 The country of birth of the father

country‐mother Categorical 42 9191 The country of birth of the mother

country‐birth Categorical 42 5157 The country of birth

fill‐questionnaire Categorical 3 0 Fill the questionnaire for veteran's
admin
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TABLE 17 COMPAS recid.: attributes characteristics

Attributes Type Values #Missing values Description

name Categorical 7158 0 First and last name of the defendant

first Categorical 2800 0 First name

last Categorical 3950 0 Last name

compas_screening_date Categorical 690 0 The date on which the decile score was given

dob Categorical 5452 0 Date of birth

decile_score Numerical [1– 0] 0 The COMPAS Risk of Recidivism score

days_b_screening_arrest Numerical [−414 to 1057] 307 The number of days between COMPAS screening and
arrest

c_jail_in Categorical 6907 307 The jail entry date for original crime

c_jail_out Categorical 6880 307 The jail exit date for original crime

c_case_number Categorical 7192 22 The case number for original crime

c_offense_date Categorical 927 1159 The offense date of original crime

c_arrest_date Categorical 580 6077 The arrest date for original crime

c_days_from_compas Numerical [0 to 9485] 22 Between the COMPAS screening and the original crime
offense date

c_charge_desc Categorical 437 29 Description of charge for original crime

is_recid Binary {0, 1} 0 The binary indicator of recidivation

r_case_number Categorical 3471 3743 The case number of follow‐up crime

r_charge_degree Categorical 10 3743 Charge degree of follow‐up crime

r_days_from_arrest Numerical [−1 to 993] 4898 Between the follow‐up crime and the arrest date (days)

r_offense_date Categorical 1075 3743 The date of follow‐up crime

r_charge_desc Categorical 340 3801 Description of charge for follow‐up crime

r_jail_in Categorical 972 4898 The jail entry date for follow‐up crime

r_jail_out Categorical 938 4898 The jail exit date for follow‐up crime

violent_recid Null 7214 Values are all NA. This column is ignored

is_violent_recid Binary {0, 1} 0 The binary indicator of violent follow‐up crime

vr_case_number Categorical 819 6395 The case number for violent follow‐up crime

vr_charge_degree Categorical 9 6395 Charge degree for violent follow‐up crime

vr_offense_date Categorical 570 6395 The date of offense for violent follow‐up crime

vr_charge_desc Categorical 83 6395 Description of charge for violent follow‐up crime

type_of_assessment Categorical 1 0 The type of COMPAS score given for decile score

decile_score.1 Numerical [1–10] 0 Repeat column of decile score

screening_date Categorical 690 0 Repeat column of compas_screening_date

v_type_of_assessment Categorical 1 0 The type of COMPAS score given for v_decile_score

v_decile_score Numerical [1–10] 0 The COMPAS Risk of Violence score from 1 to 10

v_screening_date Categorical 690 0 The date on which v_decile_score was given

in_custody Categorical 1156 236 The date on which individual was brought into custody

out_custody Categorical 1169 236 The date on which individual was released from custody

priors_count.1 Numerical 0–38 0 Repeat column of priors_count

start Numerical [0–937] 0 No information

end Numerical [0–1186] 0 No information

event Binary {0, 1} 0 No information

Abbreviation: COMPAS, Correctional Offender Management Profiling for Alternative Sanctions.
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TABLE 18 Communities and crime: attributes characteristics

Attributes Type Values #Missing values Description

state Categorical 46 0 The US state (by number)

county Categorical 109 1174 The numeric code for county

community Categorical 800 1177 The numeric code for community

communityname Categorical 1828 0 The community name

fold Numerical [1–10] 0 The fold number for nonrandom 10‐fold cross
validation

population Numerical [0.0–1.0] 0 The population for community

householdsize Numerical [0.0–1.0] 0 The mean people per household

racePctWhite Numerical [0.0–1.0] 0 The percentage of population that is Caucasian

racePctAsian Numerical [0.0–1.0] 0 The percentage of population that is of Asian
heritage

racePctHisp Numerical [0.0–1.0] 0 The percentage of population that is of Hispanic
heritage

agePct12t21 Numerical [0.0–1.0] 0 The percentage of population that is 12–21 in
age

agePct12t29 Numerical [0.0–1.0] 0 The percentage of population that is 12–29 in
age

agePct16t24 Numerical [0.0–1.0] 0 The percentage of population that is 16–24 in
age

agePct65up Numerical [0.0–1.0] 0 The percentage of population that is 65 and
over in age

numbUrban Numerical [0.0–1.0] 0 The number of people living in areas classified
as urban

pctUrban Numerical [0.0–1.0] 0 The percentage of people living in areas
classified as urban

medIncome Numerical [0.0–1.0] 0 The median household income

pctWWage Numerical [0.0–1.0] 0 The percentage of households with wage or
salary income in 1989

pctWFarmSelf Numerical [0.0–1.0] 0 The percentage of households with farm or self‐
employment income in 1989

pctWSocSec Numerical [0.0–1.0] 0 The percentage of households with social
security income in 1989

pctWRetire Numerical [0.0–1.0] 0 The percentage of households with retirement
income in 1989

medFamInc Numerical [0.0–1.0] 0 The median family income

perCapInc Numerical [0.0–1.0] 0 Per capita income (national income divided by
population size)

whitePerCap Numerical [0.0–1.0] 0 Per capita income for Caucasians

blackPerCap Numerical [0.0–1.0] 0 Per capita income for African Americans

indianPerCap Numerical [0.0–1.0] 0 Per capita income for native Americans

AsianPerCap Numerical [0.0–1.0] 0 Per capita income for people with Asian
heritage

OtherPerCap Numerical [0.0–1.0] 1 Per capita income for people with “other”
heritage

HispPerCap Numerical [0.0–1.0] 0 Per capita income for people with Hispanic
heritage

PctLess9thGrade Numerical [0.0–1.0] 0 The percentage of people 25 and over with less
than a ninth grade education
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TABLE 18 (Continued)

Attributes Type Values #Missing values Description

PctNotHSGrad Numerical [0.0–1.0] 0 The percentage of people 25 and over that are
not high school graduates

PctBSorMore Numerical [0.0–1.0] 0 The percentage of people 25 and over with a
bachelor's degree or higher education

PctUnemployed Numerical [0.0–1.0] 0 The percentage of people 16 and over, in the
labor force, and unemployed

PctEmploy Numerical [0.0–1.0] 0 The percentage of people 16 and over who are
employed

PctEmplManu Numerical [0.0–1.0] 0 The percentage of people 16 and over who are
employed in manufacturing

PctEmplProfServ Numerical [0.0–1.0] 0 The percentage of people 16 and over who are
employed in professional services

PctOccupManu Numerical [0.0–1.0] 0 The percentage of people 16 and over who are
employed in manufacturing

PctOccupMgmtProf Numerical [0.0–1.0] 0 The percentage of people 16 and over who are
employed in management

MalePctNevMarr Numerical [0.0–1.0] 0 The percentage of males who have never
married

PersPerFam Numerical [0.0–1.0] 0 The mean number of people per family

PctWorkMomYoungKids Numerical [0.0–1.0] 0 The percentage of moms of kids 6 and under in
labor force

PctWorkMom Numerical [0.0–1.0] 0 The percentage of moms of kids under 18 in
labor force

NumImmig Numerical [0.0–1.0] 0 The total number of people known to be foreign
born

PctImmigRecent Numerical [0.0–1.0] 0 The percentage of immigrants who immigated
within the last 3 years

PctImmigRec5 Numerical [0.0–1.0] 0 The percentage of immigrants who immigated
within the last 5 years

PctImmigRec8 Numerical [0.0–1.0] 0 The percentage of immigrants who immigated
within the last 8 years

PctImmigRec10 Numerical [0.0–1.0] 0 The percentage of immigrants who immigated
within the last 10 years

PctRecentImmig Numerical [0.0–1.0] 0 The percentage of the population who have
immigrated within the last 3 years

PctRecImmig5 Numerical [0.0–1.0] 0 The percentage of the population who have
immigrated within the last 5 years

PctRecImmig8 Numerical [0.0–1.0] 0 The percentage of the population who have
immigrated within the last 8 years

PctRecImmig10 Numerical [0.0–1.0] 0 The percentage of the population who have
immigrated within the last 10 years

PctSpeakEnglOnly Numerical [0.0–1.0] 0 The percentage of the population who speak
only English

PctNotSpeakEnglWell Numerical [0.0–1.0] 0 The percentage of population who do not speak
English well

PctLargHouseFam Numerical [0.0–1.0] 0 The percentage of family households that are
large (6 or more)

PctLargHouseOccup Numerical [0.0–1.0] 0 The percentage of all occupied households that
are large (6 or more people)

(Continues)
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TABLE 18 (Continued)

Attributes Type Values #Missing values Description

PersPerOccupHous Numerical [0.0–1.0] 0 The mean persons per household

PersPerOwnOccHous Numerical [0.0–1.0] 0 The mean persons per owner occupied
household

PersPerRentOccHous Numerical [0.0–1.0] 0 The mean persons per rental household

PctPersDenseHous Numerical [0.0–1.0] 0 The percentage of persons in dense housing
(more than one person per room)

PctHousLess3BR Numerical [0.0–1.0] 0 The percentage of housing units with less than
three bedrooms

MedNumBR Numerical [0.0–1.0] 0 The median number of bedrooms

PctHousOccup Numerical [0.0–1.0] 0 The percentage of housing occupied

PctVacMore6Mos Numerical [0.0–1.0] 0 The percentage of vacant housing that has been
vacant more than 6 months

MedYrHousBuilt Numerical [0.0–1.0] 0 The median year housing units built

PctHousNoPhone Numerical [0.0–1.0] 0 The percentage of occupied housing units
without phone (in 1990)

PctWOFullPlumb Numerical [0.0–1.0] 0 The percentage of housing without complete
plumbing facilities

OwnOccLowQuart Numerical [0.0–1.0] 0 Owner‐occupied housing—lower quartile value

OwnOccMedVal Numerical [0.0–1.0] 0 Owner‐occupied housing—median value

OwnOccHiQuart Numerical [0.0–1.0] 0 Owner‐occupied housing—upper quartile value

RentLowQ Numerical [0.0–1.0] 0 Rental housing—lower quartile rent

RentMedian Numerical [0.0–1.0] 0 Rental housing—median rent

TABLE 19 Communities and crime: attributes characteristics

Attributes Type Values #Missing values Description

RentHighQ Numerical [0.0–1.0] 0 Rental housing—upper quartile rent

MedRent Numerical [0.0–1.0] 0 The median gross rent

MedRentPctHousInc Numerical [0.0–1.0] 0 The median gross rent as a percentage
of household income

MedOwnCostPctInc Numerical [0.0–1.0] 0 The median owners cost (with a
mortgage) as a percentage of
household income

MedOwnCostPctIncNoMtg Numerical [0.0–1.0] 0 The median owners cost (without a
mortgage) as a percentage of
household income

PctForeignBorn Numerical [0.0–1.0] 0 The percentage of people foreign born

PctBornSameState Numerical [0.0–1.0] 0 The percentage of people born in the
same state as currently living

PctSameHouse85 Numerical [0.0–1.0] 0 The percentage of people living in the
same house as in 1985 (5 years
before)

PctSameCity85 Numerical [0.0–1.0] 0 The percentage of people living in the
same city as in 1985 (5 years before)

PctSameState85 Numerical [0.0–1.0] 0 The percentage of people living in the
same state as in 1985 (5 years
before)
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TABLE 19 (Continued)

Attributes Type Values #Missing values Description

LemasSwornFT Numerical [0.0–1.0] 1675 The number of sworn full‐time police
officers

LemasSwFTPerPop Numerical [0.0–1.0] 1675 The number of sworn full‐time police
officers in field operations

LemasSwFTFieldOps Numerical [0.0–1.0] 1675 The sworn full‐time police officers in
field operations per 100,000
population

LemasSwFTFieldPerPop Numerical [0.0–1.0] 1675 The number of sworn full time police
officers in field operations

LemasTotalReq Numerical [0.0–1.0] 1675 The total requests for police

LemasTotReqPerPop Numerical [0.0–1.0] 1675 The total requests for police per
100,000 population

PolicReqPerOffic Numerical [0.0–1.0] 1675 The total requests for police per police
officer

PolicPerPop Numerical [0.0–1.0] 1675 The number of police officers per
100,000 population

RacialMatchCommPol Numerical [0.0–1.0] 1675 A measure of the racial match
between the community and the
police force

PctPolicWhite Numerical [0.0– 1.0] 1675 The percentage of police that are
Caucasian

PctPolicBlack Numerical [0.0–1.0] 1675 The percentage of police that are
African American

PctPolicHisp Numerical [0.0–1.0] 1675 The percentage of police that are
Hispanic

PctPolicAsian Numerical [0.0–1.0] 1675 The percentage of police that are
Asian

PctPolicMinor Numerical [0.0–1.0] 1675 The percentage of police that are
minority of any kind

OfficAssgnDrugUnits Numerical [0.0–1.0] 1675 The number of officers assigned to
special drug units

NumKindsDrugsSeiz Numerical [0.0–1.0] 1675 The number of different kinds of
drugs seized

PolicAveOTWorked Numerical [0.0–1.0] 1675 Police average overtime worked

LandArea Numerical [0.0–1.0] 0 Land area in square miles

PopDens Numerical [0.0–1.0] 0 The population density in persons per
square mile

PctUsePubTrans Numerical [0.0–1.0] 0 The percentage of people using public
transit for commuting

PolicCars Numerical [0.0–1.0] 1675 The number of police cars

PolicOperBudg Numerical [0.0–1.0] 1675 Police operating budget

LemasPctPolicOnPatr Numerical [0.0–1.0] 1675 The percentage of sworn full‐time
police officers on patrol

LemasGangUnitDeploy Numerical [0.0–1.0] 1675 Gang unit deployed

LemasPctOfficDrugUn Numerical [0.0–1.0] 0 The percentage of officers assigned to
drug units

PolicBudgPerPop Numerical [0.0–1.0] 1675 Police operating budget per
population

LE QUY ET AL. 57 of 59



TABLE 20 Diabetes: attributes characteristics

Attributes Type Values #Missing values Description

encounter_ID Numerical [12,522–443,867,222] 0 Encounter's unique identifier

patient_nbr Numerical [135–189,502,619] 0 Patient's unique identifier

weight Categorical 10 98,569 Weight (pounds)

admission_type_id Categorical 8 0 The admission type (emergency, urgent, etc.

discharge_disposition_id Categorical 26 0 Discharge disposition (discharged to home, expired,
etc.)

admission_source_id Categorical 17 0 The admission source (physician referral,
emergency room, etc.)

payer_code Categorical 18 40,256 Payer code (Medicare, self‐pay, etc.

medical_specialty Categorical 73 49,949 The specialty of the admitting physician

num_lab_procedures Numerical [1–132] 0 The number of lab tests performed during the
encounter

diag_1 Categorical 717 21 The primary diagnosis

diag_2 Categorical 749 358 Secondary diagnosis

diag_3 Categorical 790 1423 Additional secondary diagnosis

number_diagnoses Numerical [1–16] 0 The number of diagnoses entered to the system

max_glu_serum Categorical 4 0 The range of the results or if the test was not taken

repaglinide Categorical 4 0 Whether the drug was prescribed or there was a
change in the dosage

nateglinide Categorical 4 0 Whether the drug was prescribed or there was a
change in the dosage

glimepiride Categorical 4 0 Whether the drug was prescribed or there was a
change in the dosage

acetohexamide Categorical 2 0 Whether the drug was prescribed or there was a
change in the dosage

glyburide Categorical 4 0 Whether the drug was prescribed or there was a
change in the dosage

tolbutamide Categorical 2 0 Whether the drug was prescribed or there was a
change in the dosage

pioglitazone Categorical 4 0 Whether the drug was prescribed or there was a
change in the dosage

troglitazone Categorical 2 0 Whether the drug was prescribed or there was a
change in the dosage

tolazamide Categorical 3 0 Whether the drug was prescribed or there was a
change in the dosage

examide Categorical 1 0 Whether the drug was prescribed or there was a
change in the dosage

citoglipton Categorical 1 0 Whether the drug was prescribed or there was a
change in the dosage

insulin Categorical 4 0 Whether the drug was prescribed or there was a
change in the dosage

glyburide‐metformin Categorical 4 0 Whether the drug was prescribed or there was a
change in the dosage

glipizide‐metformin Categorical 2 0 Whether the drug was prescribed or there was a
change in the dosage

glimepiride‐pioglitazone Categorical 2 0 Whether the drug was prescribed or there was a
change in the dosage
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TABLE 20 (Continued)

Attributes Type Values #Missing values Description

metformin‐rosiglitazone Categorical 1 0 Whether the drug was prescribed or there was a
change in the dosage

metformin‐pioglitazone Categorical 1 0 Whether the drug was prescribed or there was a
change in the dosage

change Binary {No, Ch} 0 Was there a change in diabetic medications?
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