dc.contributor.author
Goscinski, Alexander
dc.contributor.author
Musil, Felix
dc.contributor.author
Pozdnyakov, Sergey
dc.contributor.author
Nigam, Jigyasa
dc.contributor.author
Ceriotti, Michele
dc.date.accessioned
2022-05-18T07:20:16Z
dc.date.available
2022-05-18T07:20:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34516
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34234
dc.description.abstract
The input of almost every machine learning algorithm targeting the properties of matter at the atomic scale involves a transformation of the list of Cartesian atomic coordinates into a more symmetric representation. Many of the most popular representations can be seen as an expansion of the symmetrized correlations of the atom density and differ mainly by the choice of basis. Considerable effort has been dedicated to the optimization of the basis set, typically driven by heuristic considerations on the behavior of the regression target. Here, we take a different, unsupervised viewpoint, aiming to determine the basis that encodes in the most compact way possible the structural information that is relevant for the dataset at hand. For each training dataset and number of basis functions, one can build a unique basis that is optimal in this sense and can be computed at no additional cost with respect to the primitive basis by approximating it with splines. We demonstrate that this construction yields representations that are accurate and computationally efficient, particularly when working with representations that correspond to high-body order correlations. We present examples that involve both molecular and condensed-phase machine-learning models.
en
dc.format.extent
11 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Covariance and correlation
en
dc.subject
Interatomic potentials
en
dc.subject
Atomic structure
en
dc.subject
Machine learning
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Optimal radial basis for density-based atomic representations
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
86671
dcterms.bibliographicCitation.articlenumber
104106
dcterms.bibliographicCitation.doi
10.1063/5.0057229
dcterms.bibliographicCitation.journaltitle
The Journal of Chemical Physics
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.originalpublishername
American Institute of Physics
dcterms.bibliographicCitation.originalpublisherplace
Woodbury, NY
dcterms.bibliographicCitation.volume
155 (2021)
dcterms.bibliographicCitation.url
https://aip.scitation.org/doi/10.1063/5.0057229
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0021-9606
dcterms.isPartOf.eissn
1089-7690