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ABSTRACT
The input of almost every machine learning algorithm targeting the properties of matter at the atomic scale involves a transformation of the list
of Cartesian atomic coordinates into a more symmetric representation. Many of the most popular representations can be seen as an expansion
of the symmetrized correlations of the atom density and differ mainly by the choice of basis. Considerable effort has been dedicated to the
optimization of the basis set, typically driven by heuristic considerations on the behavior of the regression target. Here, we take a different,
unsupervised viewpoint, aiming to determine the basis that encodes in the most compact way possible the structural information that is
relevant for the dataset at hand. For each training dataset and number of basis functions, one can build a unique basis that is optimal in
this sense and can be computed at no additional cost with respect to the primitive basis by approximating it with splines. We demonstrate
that this construction yields representations that are accurate and computationally efficient, particularly when working with representations
that correspond to high-body order correlations. We present examples that involve both molecular and condensed-phase machine-learning
models.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0057229

I. INTRODUCTION

Machine-learning algorithms for atomistic simulations rely
heavily on the transformation of structural information and chemi-
cal composition into descriptors or features.1–3 An effective molecu-
lar representation should be invariant (or more generally, equivari-
ant) with respect to symmetry operations,3–9 capable of differentiat-
ing between inequivalent configurations,10 and sensitive to atomic
deformations.11,12 In broad terms, it should encode in the most
efficient way the relationships between a structure and the proper-
ties one is interested in predicting.13 Even though many alternative
approaches have been proposed to construct a representation that
fulfills (at least partly) these requirements,14 it has become clear that
most of the existing schemes are strongly connected to each other
and can be seen as projections on different choices of basis func-
tions of the correlations of the atom density,15,16 or equivalently of
a cluster expansion of interactions.17,18 Besides the importance of
these considerations to determine the formal relation between dif-
ferent frameworks, the choice of basis function affects the prediction
quality19 and the efficiency of a basis in terms of linearly decodable
mutual information.20 Consequently, several algorithmic recipes for
the construction of basis have been proposed6,18,21,22 that aim at

achieving computational efficiency, and/or at being best adapted
to the specific requirement of a given fitting problem, typically the
construction of a machine-learning model of the potential energy.
We bring these considerations to their logical conclusion by show-
ing that a data-driven basis to expand the atom density, which is
optimal in terms of the information content for a given number of
functions, can be built as a contraction of a larger primitive basis
set, similarly to what is routinely done in quantum chemistry for
Gaussian type orbitals (GTOs),23 and that it can be practically, and
inexpensively, evaluated as a numerical basis with striking similar-
ities to ideas in electronic-structure methods.24 Using an effective
basis reduces the number of features that are needed to encode the
same information, thereby reducing the training and prediction time
of the resulting machine learning (ML) models. We demonstrate the
accuracy, and the computational efficiency, of this approach for both
the construction of machine-learning potentials for materials and
for the prediction of molecular properties.

II. THEORY
We use the bra-ket notation originally introduced in Refs. 15

and 16 and discussed in detail in Ref. 14. An atomic structure A is
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represented in terms of its atom density,

⟨ax∣A; ρ⟩ =∑
i

δaai⟨x∣ri; g⟩, (1)

where ⟨x∣ri; g⟩ ≡ g(x − ri) is a Gaussian of width σa centered on the
position ri of the ith atom and ai is an index that indicates the chem-
ical species of that atom. Translational symmetrization breaks this
global atom density into a sum of atom-centered neighbor densities
∣A; ⟨ρ⊗2

⟩R3⟩ = ∑i ∣A; ρi⟩,

⟨ax∣A; ρi⟩ =∑
j∈A

δaaj⟨x∣rji; g⟩ fcut(rji), (2)

where rji = rj − ri, and we introduce a smooth cutoff function fcut to
restrict the range of the environment.

It is convenient to express ⟨ax∣A; ρi⟩ on a basis of spherical
harmonics Ym

l ( x̂) ≡ ⟨ x̂∣lm⟩ and radial functions Rnl(x) ≡ ⟨x∣nl⟩,

⟨anlm∣A; ρi⟩ = ∫ dx ⟨nl∣x⟩ ⟨lm∣ x̂⟩ ⟨ax∣A; ρi⟩. (3)

Regardless of the choice of ⟨x∣nl⟩, one can evaluate the density
coefficients as a sum over neighbors,

⟨anlm∣ρi⟩ =∑
j

δaaj⟨nlm∣rji; g⟩

=∑
j

δaaj⟨nl∣rji; g⟩⟨lm∣ r̂ji⟩, (4)

where ⟨nl∣r; g⟩ is a radial integral,

⟨nl∣r; g⟩ = 4πe
− r2

2σ2
a∫

∞

0
dx x2

⟨nl∣x⟩e
− x2

2σ2
a il(

xr
σ2

a
), (5)

that can be computed analytically for some choices of basis or
approximated numerically and computed as a spline for each radial
and angular channel pair.22 The σa → 0 limit corresponds to a
δ-like density, which is used in alternative implementations of the
density correlation features,6,18,21 and can be evaluated as easily on
any discrete basis. We discuss in the supplementary material some
considerations on the practical evaluation of density coefficients.

A. Optimal density basis
Principal component analysis (PCA) has been used to compute

the data-driven contractions of equivariant features that represent in
the most informative way the variability of a dataset as part of the N-
body iterative contraction of equivariant (NICE) frameworks.25 We
propose to apply this procedure to the first-order equivariants—that
correspond to the density coefficients—as a mean to determine a
data-driven radial basis. Keeping different chemical species separate,
this amounts to computing the rotationally invariant covariance
matrix (see the supplementary material),

Cal
nn′ =

1
N∑i
∑
m
⟨anlm∣ρi⟩⟨ρi∣an′lm⟩, (6)

where the summation over m ensures that the covariance is inde-
pendent of the orientation of structures in the dataset. For each

(a, l) channel, one diagonalizes Cal
= UalΛal

(Ual
)

T and computes
the optimal coefficients,

⟨aqlm; opt∣ρi⟩ =∑
n

Ual
qn⟨anlm∣ρi⟩. (7)

Note that we compute Cal without centering the density coefficients.
For l > 0, the mean ought to be zero by symmetry (although it might
not be for a finite dataset), and even for the totally symmetric, l = 0
terms, density correlation features are usually computed in a way
that is more consistent with the use of non-centered features.

The number of contracted numerical coefficients qmax can be
chosen inspecting the eigenvalues Λal

q . At first, it might appear that
in order to evaluate the contracted basis, one has to compute the
full set of nmax coefficients, and this is how the idea was applied in
Ref. 25. When combining Eq. (7) with Eq. (4), however, one sees that
the contracted coefficients can be evaluated directly,

⟨aqlm; opt∣ρi⟩ =∑
j

δaaj⟨aql; opt∣rji; g⟩⟨lm∣ r̂ji⟩, (8)

using the contracted radial integrals,

⟨aql; opt∣r; g⟩ =∑
n

Ual
qn⟨nl∣r; g⟩, (9)

that can be computed over r, approximated with cubic splines in the
range [0, rc], and then evaluated at exactly the same cost as for a
spline approximation of the radial integrals of a primitive basis of
size qmax. The exact mathematical form and implementation details
of the splines can be found in Ref. 22. Splining does not affect the
equivariant behavior of the atom-density features and introduces
minute discrepancies relative to the analytical basis, which do not
affect the quality of the resulting models. Thus, the procedure we
propose entails the following steps:

1. compute the density coefficients (4) for a representative
dataset, using any primitive basis, and a large nmax,

2. compute the covariance (6) and diagonalize it, finding the
contraction coefficients Ual

qn,
3. evaluate the contracted radial integrals using Eq. (9), over a

dense radial grid,
4. use a spline approximation to evaluate directly the radial

integrals (8) for the first qmax optimal features, and use the
coefficients in subsequent ML steps.

Even though this framework only needs the contracted radial
integrals (5), one can also compute and inspect the “optimal radial
basis” that corresponds to the optimized coefficients,

⟨x∣aql; opt⟩ ≡∑
n

Ual
qn⟨x∣nl⟩. (10)

For a given dataset, these functions are optimal in the sense that
when truncated to qmax < nmax, they describe the greatest fraction
of the variance for the local atom-density coefficients, and unique in
the sense that they are independent on the choice of the primitive
basis, in the limit in which the latter is complete, as demonstrated in
Sec. III.
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1. Mixed-species basis
Even though Eq. (6) is defined separately for different species

a, it is also possible to compute cross correlations between different
elemental channels, defining

Cl
an;a′n′ =

1
N∑i
∑
m
⟨anlm∣ρi⟩⟨ρi∣a′n′lm⟩, (11)

as performed in the NICE framework25 following ideas proposed
in Ref. 16, resulting in coefficients that combine information on
multiple species,

⟨qlm; opt∣ρi⟩ =∑
n

U l
q;an ⟨anlm∣ρi⟩, (12)

similar in spirit to the alchemical contraction discussed in Ref. 15. It
is worth noting that although the NICE code26 contains the infras-
tructure to compute these contractions as a post-processing of the
primitive basis, the implementation we propose in librascal27 com-
putes the contracted coefficients directly. However, it only imple-
ments the less information-efficient separate (a, n)-PCA strategy.
An implementation that evaluates directly the combined contraction
would incur an overhead because every neighbor would contribute
to every q channel irrespective of their species,

⟨qlm; opt∣ρi⟩ =∑
j
∑
an

U l
q;anδaaj⟨nlm∣rji; g⟩

=∑
j
∑

n
U l

q;ajn⟨nl∣rji; g⟩⟨lm∣ r̂ji⟩

=∑
j
⟨ajql; opt∣rji; g⟩⟨lm∣ r̂ji⟩. (13)

Given, however, that the cost of evaluating the density coefficients
is usually a small part of the calculation of density correlation
features,22,28 we expect that this approach should be, in general,
preferable compared to the calculation of a large primitive basis and
to a two-step procedure in which element-wise optimal functions are
further contracted into mixed-element coefficients.

2. Supervised basis set optimization
For a given number of radial functions, and a target dataset, the

data-driven contracted basis (7) provides the most efficient descrip-
tion of the atom-centered density in terms of the fraction of the
retained variance. The most effective variance-preserving compres-
sion, however, does not guarantee that the features are the most
effective to predict a given target property. In fact, it has already been
shown that smooth overlap of atomic positions (SOAP) features
tend to emphasize correlations between atoms that are far from the
atomic center, which can lead to a counterintuitive degradation of
the model accuracy with increasing cutoff radius.15,29 This effect can
be contrasted by introducing a radial scaling13,15 that de-emphasizes
the magnitude of the atom density in the region far from the central
atom. By applying this scaling—or other analogous tweaks28—to the
atom density before it is expanded in the primitive basis, one ensures
that the optimal basis is also built with a similar focus on the struc-
tural features that contribute more strongly to the target property.
In other terms, the information-optimal basis set we introduce here
can be combined with a heuristic or data-driven optimization of the
underlying density representation to reflect the scale and resolution
of the target property.

Another possibility is to extend the scheme to incorporate a
supervised target yi in the selection of the optimal basis using prin-
cipal covariates regression (PCovR).30,31 PCovR is a simple linear
scheme that can be tuned to provide a projection of features to
a low-dimensional latent space that combines an optimal variance
compression target with that of providing an accurate linear approx-
imation of the desired target property. Since l > 0 contributions of
the features have zero mean, the optimization problem can be com-
bined with a supervised component only for l = 0 and yields an
optimal basis,

⟨r∣aq0; opt; γ⟩ =∑
n

Ua0;γ
qn ⟨r∣n0⟩, (14)

which is a special case of Eq. (10) for l = 0, where Ua0;γ
qn is obtained

as the orthogonalized PCovR projector, as discussed in Refs. 30
and 31, using a mixing parameter γ, which determines how strong
the emphasis of the optimization should be on minimizing the
residual variance or the error in regressing the target.

B. Density correlation features
In the vast majority of applications, the density coefficients

are not used directly in applications but are combined to build
higher order invariant or equivariant features.3,8,16,18 For exam-
ple, the power spectrum (i.e., SOAP invariant features3) can be
computed as

⟨a1n1; a2n2; l∣ρ⊗2
i ⟩∝

1
√

2l + 1
∑
m
⟨a1n1lm∣ρi⟩⟨a2n2lm∣ρi⟩

⋆, (15)

where the density coefficients can be either those obtained from
primitive basis functions truncated at increasing nmax or those from
an optimal basis containing qmax terms. For this work, we use pri-
marily the orthogonalized GTO basis introduced in Ref. 22, which
compares favorably in terms of information content14,20 with a dis-
crete variable representation (DVR) basis (a family of orthogonal
polynomials), as well as with the alternative GTO basis used in
DScribe32 and the shifted-Gaussian basis of QUIP.33

We discuss the general case of “multispectra” in the frame of
the N-body iterative construction of equivariant (NICE) features,25

but analogous considerations apply to similar many-body descrip-
tors, such as the atomic cluster expansion (ACE)18,25 or the moment
tensor potential (MTP),6 and are likely to be relevant also for covari-
ant neural networks.9,34 We consider the case of a single chemical
species to keep a notation that is by necessity quite cumbersome as
simple as possible, but the generalization is trivial. The NICE itera-
tion increases the body order of features that describe correlations
between ν neighbors ⟨Q∣ρ⊗ν

i ; σ; λμ⟩ (Q is a generic index that labels
the features, and λ, μ, and σ are the indices that describe their behav-
ior with respect to rotations and inversion) by combining lower
order features,

⟨Q; nlk∣ρ⊗(ν+1)
i ; σ; λμ⟩∝∑

m
⟨n∣ρ⊗1

i ; l m⟩

× ⟨Q∣ρ⊗ν
i ; (σ(−1)l+k+λ); k(μ −m)⟩

× ⟨lm; k(μ −m)∣λμ⟩, (16)
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using Clebsch–Gordan coefficients ⟨lm; l′m′∣l′′m′′⟩ in an expression
analogous to the sum of angular momenta. The ν = 1 equivariants
are nothing but the density coefficients,

⟨n∣ρ⊗1
i ; σ; l m⟩ = δσ1⟨nlm∣ρi⟩

⋆, (17)

and one can compute invariant descriptors by retaining only the
⟨Q∣ρ⊗ν

i ; 1; 00⟩ terms using the other components only as computa-
tional intermediates.

1. Change of basis for the multispectrum
First, we investigate the relation between the multispectra com-

puted in an arbitrary radial basis and in the optimal basis obtained
from the principal components of the density coefficients,

⟨Q; qlk; opt∣ρ⊗(ν+1)
i ; σ; λμ⟩

∝∑
m
⟨qlm; opt∣ρi⟩

⋆
⟨Q∣ρ⊗ν

i ; σ((−1)l+k+λ); k(μ −m)⟩

× ⟨lm; k(μ −m)∣λμ⟩

=∑
m
⟨lm; k(μ −m)∣λμ⟩∑

n
U l

qn⟨nlm∣ρi⟩
⋆

× ⟨Q∣ρ⊗ν
i ; σ((−1)l+k+λ); k(μ −m)⟩

=∑
n

U l
qn⟨Q; nlk∣ρ⊗(ν+1)

i ; σ; λμ⟩. (18)

In other terms, the change of basis can be achieved by constructing
the multispectrum using the density coefficients in the optimal radial
basis or by applying the transformation to each (nν, lν) term in the
multispectrum computed in the original basis. The transformation
of the multispectrum is given by a block-diagonal matrix composed
of Ul.

2. Truncation of the multispectrum
Among the consequences of Eq. (18) is the fact that—if the

optimal basis is not truncated so that Ul enacts an orthogonal
transformation—the change to the optimal basis preserves the mag-
nitude of the multispectrum,

nmax

∑
q=1
∣⟨Q; qlk; opt∣ρ⊗(ν+1)

i ; σ; λμ⟩∣
2
=

nmax

∑
n=1
∣⟨Q; nlk∣ρ⊗(ν+1)

i ; σ; λμ⟩∣
2
.

(19)

More generally, truncating the basis to include qmax optimized
basis functions reduces the norm of the multispectrum by the same
multiplicative factor at each iteration,

qmax

∑
q=1
∑
lkQ
∑
σλμ
∣⟨Q; qlk; opt∣ρ⊗(ν+1)

i ; σ; λμ⟩∣
2

=

qmax

∑
q=1
∑
lm
∣⟨q∣ρ⊗1

i ; l m ⟩∣
2
×∑

Qσkp
∣⟨Q∣ρ⊗ν

i ; σ; kp ⟩∣
2
, (20)

which can be derived exploiting the orthogonality of CG coefficients
(see the supplementary material). One sees how (if the compound
index Q was expanded to indicate the qνlνkν terms at each order ν)

the norm of the multispectrum can be expanded into a product of
terms coming from each order, and the errors introduced by trun-
cation accumulate as a product. As a sidenote, the combination of
Eqs. (19) and (20) implies that, for each environment, the norm of
the ν-spectrum should equal the norm of the corresponding one-
spectrum raised to the power ν when summing over all the equiv-
ariant components. This provides a stringent test to estimate the
amount of information that is lost when contracting, subselecting, or
truncating the angular momentum of the equivariant components
during the iterative construction of high-body order features.

3. Principal component basis for multi-spectra
The derivation of (20) applies to each environment Ai sep-

arately and does not translate exactly into an expression for the
retained variance (which involves an average over the training set). A
similar issue arises when addressing the question of what is the best
radial basis (again in terms of variance retained for a given level of
truncation) that one can use to apply the NICE iteration for a specific
feature Q and intermediate angular momentum state k. In building
the covariance, we sum over (σ, λ, μ)—i.e., we look for a single trans-
formation that applies to all terms that derive from combinations of
⟨Q∣ρ⊗ν

i ; s; kp⟩ with the density coefficients,

NCl
nn′(ν; Q; k) =∑

iσλμ
⟨Q; nlk∣ρ⊗(ν+1)

i ; σ; λμ⟩

× ⟨ρ⊗(ν+1)
i ; σ; λμ∣Q; n′lk⟩

=∑
i
∑
m
⟨n∣ρ⊗1

i ; l m ⟩⟨ρ⊗1
i ; l m∣n′⟩

×∑
σp
∣⟨Q∣ρ⊗ν

i ; σ; kp ⟩∣
2
. (21)

This expression corresponds to a covariance matrix of the density
coefficients, which is built by weighting the contribution from each
environment by the magnitude of ⟨Q∣ρ⊗ν

i ; σ; kp⟩. Thus, the optimal
combinations that are determined for ν = 1 are not necessarily equal
to those needed in further iterations. Computing a different radial
basis for each NICE iteration would be extremely cumbersome; in
what follows, we provide evidence that the basis optimized for the
density coefficients provides an effective compression even for the
higher-order terms in the multispectrum.

III. RESULTS
To illustrate the construction and use of an optimal radial basis,

we present examples for two very different problems: the construc-
tion of a general-purpose potential for silicon, based on the training
dataset from Ref. 35, and the prediction of atomization energies for
the organic molecules from the QM9 dataset.36 These two examples
are complementary: The silicon potential involves a single chemical
species, uses forces for training, and aims to predict the proper-
ties of arbitrarily distorted configurations. The QM9 energy model
involves multiple elements, but only minimum-energy structures,
and, despite its limitations, has been widely used as a benchmark
of new representations for molecular machine learning.37
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A. Convergence of the density expansion
We begin by considering the convergence of the density expan-

sion by considering a large primitive basis and then increasing qmax
monitoring the residual variance,

RV = 1 −
∑i∑

qmax
q=1 ∣⟨qlm; opt∣ρi⟩∣

2

∑i∑
nmax
n=1 ∣⟨nlm∣ρi⟩∣

2 , (22)

which measures the amount of information lost relative to that
contained in the large-nmax primitive basis description. For the Si
dataset, the residual variance decays rapidly with an increasing num-
ber of optimal basis functions, as shown in Fig. 1. The figure also
shows the shape of the optimal radial functions and demonstrates
that the same radial functions can be obtained starting from either
the DVR or GTO bases implemented in librascal: The discrepancy
increases for higher indices q but can be reduced by increasing the
size of the primitive basis at no cost during the evaluation of the

FIG. 1. Several examples of the optimized radial basis functions on the silicon
dataset for l = 0 and l = 4 using DVR and GTO as the primitive basis contracted
from nmax = 20, with rcut = 6.

optimal splined basis. Furthermore, the optimal functions reflect
some “sensible” expectations—highly oscillating functions are asso-
ciated with low covariance eigenvalues, the functions decay at the
cutoff distance [even if the raw basis exhibits much larger spillover
(see the supplementary material)], and higher angular momentum
functions are peaked at larger distances, consistent with the greater
variability in the angular distribution at large r.

In the multi-species case, exemplified by the QM9 dataset, there
are several possible choices for the contraction strategy. First, one
can compute a different contraction depending on the species of
the central atom (center-type specific) or use the same basis func-
tions independent of ai (center-type independent). Second, one can
contract separately the density contribution from each neighbor
type along the radial index or compute a covariance matrix that
combines the (a, n) indices. Figure 2 shows the convergence of
the residual variance for the four possible cases, compared to the
baseline of a primitive GTO basis of increasing size—which shows
by far the slowest convergence, requiring almost 100 radial chan-
nels (nmax = 20 for the five species present) to reduce the residual
below 10−4. The same level can be achieved with qmax ∼ 50 when

FIG. 2. Convergence of the residual variance for the expansion coefficients of
the density as a function of the number of radial basis functions qmax, computed
for the QM9 dataset and for environments centered on a C atom. The different
series correspond to a GTO basis of increasing size (black) and to an optimal basis
computed for each neighbor density by separating (blue) or by mixing chemical and
radial channels (a, n) (red). The full lines use the same basis irrespective of the
species of the central atom, and the dashed lines correspond to a basis optimized
specifically for C-centered environments.
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performing separate PCAs for each neighbor species and qmax ∼ 30
when computing jointly the correlations between radial and elemen-
tal channels. Performing a separate PCA depending on the species of
the central atom accelerates slightly the convergence of the residual
variance.

B. Convergence of density correlation features
We now turn to considering how the truncation of the den-

sity expansion basis affects the evaluation of higher-order features,
focusing in particular on the invariant components. We begin ana-
lyzing the convergence of the power spectrum computed for the
Si dataset. We take the SOAP features computed with a large
nmax = 20 as the “full” description of three-body correlations and
compute the global feature space reconstruction error20 (GFRE)

that measures how accurately the full feature space can be recon-
structed using SOAP features that are built from a truncated den-
sity expansion. Given that SOAP features are usually subselected
using a low-rank matrix approximation (CUR) approach38 or far-
thest point sampling (FPS),39,40 we also investigate the interplay
between the density expansion optimization and this further feature
reduction step.

Using an optimal density expansion basis systematically
improves the GFRE compared to a GTO basis of the same size
(Fig. 3). This is true for both the full-sized SOAP vector and a
subselection of the invariant power spectrum entries based on a
deterministic CUR algorithm, as well as on FPS. This suggests that
using an optimal radial basis as the building block of higher-order
spectra yields feature vectors that can be easily compressed further,
which is important to reduce the cost of evaluating SOAP based

FIG. 3. Feature space reconstruction errors for the power spectrum, resulting from the truncation of the radial basis and from the selection of a subset of the power
spectrum entries using a deterministic CUR scheme and FPS. The “full” feature space is approximated with the power spectrum features, computed using a GTO basis with
nmax = 20, lmax = 6, and we compare the convergence obtained by using a smaller GTO basis against a truncated optimal basis of the same size.
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FIG. 4. Residual variance for the multispectra computed for the QM9 dataset. For
each body order, the baseline variance is taken to be that associated with the NICE
features built starting from a “full” vector of density coefficients (nmax = 20, lmax

= 5)—summing over the contributions from all atoms in a representative sample of
the QM9 dataset. We compare results for a small GTO basis (dashed lines) against
those for an optimal basis (full lines) determined using a separate PCA procedure
depending on the chemical nature of the central atom and using a combined (a, n)
covariance. (Top) The different colors correspond to order-ν multispectra. ν = 1
and ν = 2 terms are computed in full; for the ν > 2 terms, the NICE contraction
has been converged so that the discarded variance at each iteration is smaller
than that due to the truncation of the density coefficients. (Bottom) Comparison
of the residual variance for fixed radial/chemical basis size and different orders of
the multispectrum. The dotted lines indicate the behavior one would expect if the
retained variance followed exactly the multiplicative behavior given in Eq. (20).

models. The cost of different parts of the feature evaluation (den-
sity expansion, invariant calculation, kernel evaluation, gradients,
and so on) depends subtly on the composition of the system and
the various convergence parameters.22 When evaluating a Gaus-
sian process regression model, the calculation of the invariant fea-
tures and the kernel values is often dominant, and so the possibility
of aggressively subselecting SOAP features with little performance
loss is as important as the reduction in the number of radial basis
size.

The same efficient compression is observed for the QM9
dataset, when extending the construction to higher-order features
and to a multi-component system. Despite the fact that, as discussed
in Sec. II B, there is no formal guarantee that the optimal density
coefficients are also optimal to build high-ν equivariants, we find
in practice that the PCA basis leads to a much faster convergence
of the bispectrum and the trispectrum compared to the primitive
basis (Fig. 4, top panel). The truncation of the density coefficients
affects the multispectra in a way that is qualitatively similar to what
predicted by Eq. (20): The impact of an incomplete description of
the density gets amplified by taking successive orders of correlation
(Fig. 4, bottom panel). Given that the raw number of multispectrum
components grows exponentially as qν

max, the density basis trunca-
tion has a dramatic effect in reducing the size of the multispectrum
vector. This observation may be extremely important in the con-
struction of systematic high-body order expansions, such as NICE or
ACE, and in particular in the extension of these approaches to multi-
ple chemical species. The very efficient feature reduction that can be
achieved by combining (a, n) channels at the density level shall make
it much easier to avoid the exponential increase in the complexity of
high-body order models with growing chemical diversity.

C. Regression models
The accuracy of a Gaussian approximation potential based on

SOAP features, trained using both energy and forces (details in the
supplementary material), seen in Fig. 5 shows an improvement of the
cross-validation error for the most aggressive truncation of the fea-
ture space (up to nmax ≈ 6 for forces and nmax ≈ 4 for energy), but no
improvements for large nmax. For the largest feature set, the primitive
GTO basis can be up to 10% more accurate than the corresponding
optimal basis model. A comparison with Fig. 3, which shows that
the PCA basis is objectively more informative than the primitive
basis, suggests that an effect similar to the degradation of perfor-
mance with increasing environment cutoff radius might be at play
here: For this dataset size, the GTO basis, which becomes smoother
for large distances, is better suited to build a potential with limited
amounts of training data. The fact that the GTO basis may be for-
tuitously better adapted to this specific regression problem is also
suggested by the non-monotonic convergence of the error. Depend-
ing on the value of nmax, the GTO functions are distributed so as to
span the [0, rc] range (see the supplementary material). Particularly
for small nmax and for a relatively small train set size, the varying
positions of maxima and nodes of the orthogonalized GTOs empha-
size different portions of the atomic environment and can produce
such a non-monotonic trend. The PCA basis, on the other hand, is
constructed to provide a progressively more complete description
of the atom density for the specific training set, resulting in a more
regular, mostly monotonic convergence.

These effects can be investigated more easily by considering
a two-body model that uses only the ⟨n∣ρ⊗1

i ⟩∝ ⟨n00∣ρi⟩ features.
The comparison between the GTO and the DVR basis (the former
being vastly superior in terms of linearly decodable mutual infor-
mation content,20 as seen from the GFRE in the bottom panel of
Fig. 6) is far from clear-cut, with GTOs giving the worst results for
forces with nmax = 4, 6. The optimal PCA basis is usually compara-
ble with—but not substantially better than—the best result between
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FIG. 5. Energy and force RMSE for a Gaussian approximation potential based on the power spectrum, fitted to the Si dataset, plotted as a function of the number of radial
functions nmax(qmax) and sparsification of the SOAP features, nSOAP (using CUR selection).

GTO and DVRs for each size of the basis. The relative performance
of different basis sets is similar when using a linear model and a poly-
nomial kernel, although the nonlinear model reaches an accuracy
that is approximately six times better for energies and two times bet-
ter for forces. We extend the optimal basis to a PCovR optimization
(γ = 0.1) with the energies as a supervised component to determine
the contraction coefficients of the basis: As shown in Fig. 6 (top, cen-
ter), this PCovR optimal basis yields much better accuracies in the
small qmax range. In fact, by taking the “pure regression,” γ→ 0 limit
of PCovR, one would obtain a basis that, for a linear model, yields an
accuracy comparable to a fully converged two-body potential even
with qmax = 1. This is because the coefficients are built so that a lin-
ear regression performed for the qmax-dimensional features would
match as well as possible the predictions of a linear model based on

the full primitive basis,

w
opt
0 ⟨q=0; opt; γ→ 0∣ρ⊗1

i ⟩≈∑
n
wn⟨n∣ρ⊗1

i ⟩ = ỹ(Ai). (23)

Thanks to the spline approximation of the optimal basis,
⟨0; opt; γ→ 0∣ρ⊗1

i ⟩ can be computed at the cost of a single radial
function evaluation, much as it would be the case for a pair poten-
tial. The use of a nonlinear model based on the same radial spec-
trum features provides the simplest test of transferability for the
PCovR-optimized basis beyond ridge regression. Even though for
very small qmax there is a noticeable improvement [up to a factor
of 2 for the force root-mean-square error (RMSE) and qmax = 2]
against primitive and PCA-optimized bases, the advantage is quickly
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FIG. 6. Energy (top) and force (center) fivefold cross-validation RMSE and GFRE
(bottom), computed on the silicon dataset for models based on the radial spectrum

∣ρ⊗1
i ⟩, as a function of the number of radial functions. Different curves correspond

to a primitive DVR and GTO basis and to the optimal (PCA and PCovR) contracted
bases. The PCovR contraction is performed with γ = 0.1. The full lines correspond
to a linear model, and the dashed lines correspond to a polynomial kernel with
exponent ζ = 4. The GFRE is computed relative to a nmax = 20 GTO basis.

lost for larger bases, where the variance reduction plays the lead-
ing role in driving the selection of radial basis even for small α.
As shown in Fig. 6 (bottom), the improved regression accuracy of
PCovR-optimized basis functions comes at a necessary cost in terms
of reconstruction error—even though with an intermediate value of

the mixing parameter they achieve higher information content than
either of the primitive bases, as measured by the GFRE.

The advantages of using an optimized radial basis become
much clearer for the QM9 dataset. As shown in Fig. 7, there is a dra-
matic improvement of performance at all body orders when using a
PCA-contracted (a, n) basis, with the improvement becoming more
and more substantial for higher ν. For the bispectrum features with
qmax = 5 (effectively only one channel per species), the use of a com-
bined basis leads to a fivefold reduction in the test error compared to
the primitive GTO basis and makes it possible to reach the symbolic

FIG. 7. Convergence of ML models of the atomization energy of molecules from
the QM9 dataset. (Top) Convergence as a function of the (a, n) radial basis size,
comparing a primitive GTO basis and an optimal PCA contraction, for different
body orders of the features. For large qmax, it is necessary to truncate aggressively
the NICE iteration, which results in a plateau of the accuracy with large qmax. All
curves are trained and tested on a set of 65 000 structures, up to the largest qmax,
which could fit into 1 TB of memory. (Bottom) The learning curves are obtained
with linear models built on the PCA optimal features of increasing body order. All
colored curves are computed with qmax = 50, and the same truncation parameters
as in the top panel. For comparison, we show a selection of bespoke models, with
black lines: a large NICE model (full line) using 53 390 features; the NICE model
from Ref. 25 (dashed line); and a kernel model based on the power spectrum,
using parameters analogous to those in Ref. 15 (dotted line).

J. Chem. Phys. 155, 104106 (2021); doi: 10.1063/5.0057229 155, 104106-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

threshold of 1 kcal/mol mean absolute error (MAE). In other terms,
an optimal PCA contraction achieves an accuracy comparable to a
primitive GTO basis, which is roughly two times larger. Given that
the number of bispectrum (ν = 3) feature scales as q3

max, this trans-
lates into an order of magnitude improvement in computational effi-
ciency for the QM9 predictions. For larger basis sets, and for ν > 3, it
becomes necessary to truncate the construction of the multispectra,
which within the current implementation of the NICE framework
is achieved with further PCA contractions applied at each itera-
tion. In order to be able to use a consistent PCA threshold up to
the full primitive GTO basis (which contains nmax = 20 radial terms
per chemical species), we need to use a rather aggressive trunca-
tion, which results in clear performance loss, as evidenced by the
saturation of the model accuracy with increasing qmax.

The interplay of the truncation of the density coefficients, the
thresholding heuristic, and the use of the features in a linear or
a nonlinear model is evident in the lower panel of Fig. 7. The
plot compares the NICE models computed with qmax = 50 and an
aggressive truncation of the body-order iteration, with the more
balanced settings from Ref. 25 (nmax = 12, lmax = 7, νmax = 5, 1000
invariant features per body order), with a “large NICE” model that
includes 53 880 features (up to ν = 4, built upon a relatively small
spherical expansion with lmax = 5 and nmax = 5), and with a kernel
ridge regression (KRR) model that uses the same parameters as in
Ref. 15 (i.e., using only the power spectrum and a nonlinear ker-
nel). The details of the NICE construction affect substantially the
stability and the accuracy of the model in the high-ntrain limit, which
vary by a factor of 2. Furthermore, a nonlinear model based on low-
body order features is the most accurate, reaching a state-of-the-art
MAE of 0.12 kcal/mol with ntrain = 105. Even though a thorough
investigation of these aspects is beyond the scope of the present
work, the understanding of the interplay between the truncation
of the density basis and the information loss at high-body order
that we discuss here shall support more systematic studies in the
future.

IV. CONCLUSIONS
The realization that most of the widely adopted representa-

tions for machine learning of atomistic properties can be seen as
a discretization of interatomic correlations naturally points to the
importance of determining the most expressive and concise basis
to expand the atom density. For a given dataset, it is possible to
uniquely define a basis that is optimal in terms of its ability to linearly
compress the information encoded in the variance of the density
coefficients, which can be determined as a contraction of any com-
plete primitive basis and evaluated efficiently by approximating it
with splines.

We have explored, both analytically and with numerical exper-
iments, the implications of this choice to evaluate higher-order cor-
relations of the density and to build linear and nonlinear regression
models of the energy for both condensed-phase silicon and small
organic molecules. Our study indicates that the optimization of the
density basis has a dramatic impact on the information content
of higher-order features, but that achieving the ultimate accuracy
also requires tuning the basis to reflect the sensitivity of the target
property to changes in the atomic configurations. A more intuitive
approach may be to perform this tuning at the level of the atomic

density, e.g., modulating the amplitude and resolution of atomic
contributions depending on the distance from the central atom. An
“unsupervised” optimal basis would then provide the most concise,
and systematically convergent, discretization of this tuned atomic
density.

Another possible strategy involves the use of supervised criteria
in the construction of the basis, as we have demonstrated applying
PCovR to the construction of an optimal ν = 1 basis. A systematic
investigation of the effect of varying the parameters of PCovR, as
well as the use of PCov-style feature selection41 in the construction
of the multispectra, is a promising direction for further research.
One of the challenges is that it is only meaningful to apply the lin-
ear reasoning that underlie PCovR to optimize features with the
same equivariant behavior as the targets, and so the l > 0 channels of
the density coefficients cannot be optimized with a straightforward
application of this scheme to the fitting of (scalar) potential.

The performance gains associated with the use of an optimal
basis are much clearer in the presence of multiple chemical elements,
in particular when using a combined basis in which radial channels
associated with different species are considered together in the con-
struction of the symmetry-adapted feature covariance matrix. This
combined basis can capture the same amount of information of a
primitive basis that is 3–5 times larger and is essential to the effi-
cient construction of high-order density correlation features, given
that we show analytically how the loss of information that is due to a
truncated basis becomes worse with increasing ν. It shall help accel-
erate the convergence of the schemes, such as NICE, ACE, and MTP,
that rely on very high-body order terms. We show that linear NICE
models built on high-order combinations of the optimal basis yield
much lower error than those constructed on a GTO basis of simi-
lar size, even though the truncation of the body-order iteration, or
introducing nonlinearities, can also affect, positively or negatively,
convergence.

The determination of the optimal basis is much less demand-
ing than the fitting of even the simplest models. After fitting, the
evaluation of the contracted basis involves no overhead over a
primitive basis of equal size, thanks to the use of a spline approx-
imation. Given that it provides consistently higher information
content and that it results in models that have comparable (for sil-
icon) or much better (for QM9) accuracy than standard choices
of orthogonal bases, we recommend adopting this scheme in any
machine-learning approach that requires representing an atomic
density—particularly for systems that involve many chemical species
or for frameworks that rely on the evaluation of high-order density
correlations.

SUPPLEMENTARY MATERIAL

The supplementary material contains additional derivations
and more detailed benchmarks of the methods discussed in the main
text.
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