dc.contributor.author
Ceriotti, Michele
dc.contributor.author
Clementi, Cecilia
dc.contributor.author
Lilienfeld, O. Anatole von
dc.date.accessioned
2022-04-28T12:19:50Z
dc.date.available
2022-04-28T12:19:50Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34272
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33990
dc.description.abstract
Over recent years, the use of statistical learning techniques applied to chemical problems has gained substantial momentum. This is particularly apparent in the realm of physical chemistry, where the balance between empiricism and physics-based theory has traditionally been rather in favor of the latter. In this guest Editorial for the special topic issue on “Machine Learning Meets Chemical Physics,” a brief rationale is provided, followed by an overview of the topics covered. We conclude by making some general remarks.
en
dc.format.extent
5 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Molecular dynamics
en
dc.subject
Chemical physics
en
dc.subject
Gaussian processes
en
dc.subject
Potential energy surfaces
en
dc.subject
Artificial neural networks
en
dc.subject
Quantum chemistry
en
dc.subject
Machine learning
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Machine learning meets chemical physics
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
85808
dcterms.bibliographicCitation.articlenumber
160401
dcterms.bibliographicCitation.doi
10.1063/5.0051418
dcterms.bibliographicCitation.journaltitle
The journal of chemical physics
dcterms.bibliographicCitation.number
16
dcterms.bibliographicCitation.originalpublishername
American Institute of Physics
dcterms.bibliographicCitation.originalpublisherplace
Melville, NY
dcterms.bibliographicCitation.volume
154 (2021)
dcterms.bibliographicCitation.url
https://aip.scitation.org/doi/10.1063/5.0051418
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0021-9606