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ABSTRACT
Over recent years, the use of statistical learning techniques applied to chemical problems has gained substantial momentum. This is partic-
ularly apparent in the realm of physical chemistry, where the balance between empiricism and physics-based theory has traditionally been
rather in favor of the latter. In this guest Editorial for the special topic issue on “Machine Learning Meets Chemical Physics,” a brief rationale
is provided, followed by an overview of the topics covered. We conclude by making some general remarks.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0051418., s

I. INTRODUCTION

Machine learning is making its way into all fields of science, and
chemical physics is no exception. This special topic collects several
contributions that showcase the level to which data-driven method-
ologies have become intertwined with the practice of this discipline.
From the construction of interatomic potentials and of models of
atomic-scale properties to the accelerated sampling of rare events
and the construction of coarse-grained (CG) descriptions of molec-
ular interactions, there is no corner of computational chemistry and
materials science that has not benefited from the incorporation of
machine-learning techniques.

Several general trends emerge from the articles that are pub-
lished in this special issue, which documents the evolution of the
field since the publication of the collection on “Data enabled the-
oretical chemistry” in 2018.1 One is the coming of age of the dis-
cipline: exploratory studies and benchmarks have been increas-
ingly replaced by an effort to optimize and study systematically
the interplay of data-driven and physics-inspired approaches, with
a particular focus on the descriptors that are used to represent
an atomistic configuration. The art of building a set of reference
structures for training has also become more standardized, merg-
ing with techniques used to sample structural landscapes, active
learning, and uncertainty quantification. Thanks to these technical

advances, models of the potential energy have become more
accurate, transferable, and easy to build and are often combined with
advanced simulation techniques to study problems of greater com-
plexity and sophistication to an extent that was not possible with
either empirical force fields or ab initio methods. The connection
with coarse-graining approaches extends the length and time scales
of systems that can be treated with machine-learning potentials.
What is more, statistical learning is being applied to other atomic-
scale properties beyond energies and forces, such as polarizabilities
or nuclear magnetic resonance (NMR)-shifts, as well as to the pre-
diction of ingredients of an electronic-structure calculation. Several
articles report successful attempts to predict, or use as inputs, matrix
elements of a Hamiltonian or the electron density—further blurring
the lines between the numerics of chemical physics-based approxi-
mations, and machine learning. The exchange of concepts between
the two fields is more intense than ever and is maybe the main
driver of the fast-paced progress, as also manifested by the many and
important papers in this special issue.

II. SUMMARY OF AREAS COVERED
The number and variety of contributions collected in this

special topic testify to the activity and excitement surround-
ing the application of machine learning to chemical physics
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problems. We give a brief overview of the main subject areas that are
represented and provide glimpses of the state of the art presented.

A. Representations and models
for atomic-scale learning

The accuracy of a machine-learning scheme to predict
structure–property relations at the atomic scale depends on the
interplay between the descriptors used to represent the structures
and the regression technique used to associate them with the target
properties. Several papers in this special issue try to understand bet-
ter the interaction between these components and how they deter-
mine the performance of the model. In Ref. 2, Bilbrey et al. ratio-
nalize the neural-network models of the energy of water oligomers
by developing topological descriptors of the connectivity of different
structures and using them to characterize the dataset and the per-
formance of different models. The choice of input representation is
recognized as a crucial ingredient: both Jinnouchi et al.3 and Low et
al.4 analyze quantitatively the role of descriptors in the construction
of potentials—the former discussing silicon and magnesium oxide
and the latter focusing on the prediction of the melting point of ionic
liquids. Onat et al. take a more abstract approach, investigating the
response of different representations to perturbations of the atomic
positions.5

Representations being so fundamental, it is no surprise that
considerable activity concerns the optimization of the input rep-
resentations: Li et al. do so by using pair distribution functions
to build atom-centered neural-network potentials,6 while Casier
et al. demonstrate the effectiveness of a simple principal compo-
nent analysis (PCA) compression of the input features to improve
the performance of a neural network.7 The computational efficiency
is not less important than the accuracy of the model, and the two are
not necessarily in opposition, as shown by Christensen et al.,8 who
present FCHL19, a numerically improved variation of the original
FCHL18 representation. Grisafi and Ceriotti combine local environ-
ment descriptors based on symmetrized atom-density correlations
with the ability to describe long-range electrostatics,9 while Nigam
et al. provide an efficient scheme to increase the body order of such
atom correlations to obtain more descriptive features, providing
remarkable accuracy even with the simplest linear models.10 Finally,
as discussed in Ref. 11, Christiansen et al. introduce an image-based
representation that is specifically developed for reinforcement learn-
ing algorithms—complementing the features dedicated to statistical
property regression that make up the bulk of those discussed in this
issue.

B. Potentials for materials and molecules
By and large, training models that are capable of predicting

energy and forces of atomistic systems—both gas-phase molecules
and condensed phases—is the most mature and widespread applica-
tion of machine learning in atomistic simulations since it directly
caters to molecular dynamics applications. Several papers in this
issue present the construction of potential energy surfaces (PESs) for
molecular systems, pushing the boundaries of the size and complex-
ity of the system being studied. Song et al.12 study a relatively simple
OH + HO2 → O2 + H2O reaction, focusing on reducing the num-
ber of reference quantum chemistry calculations. Dral et al.,13 on
the other hand, use a hierarchy of PES trained on different levels of

theory to obtain high accuracy with only few high-end energy eval-
uations. Bowman and collaborators apply permutation-invariant
polynomials to fit the PES of a 15-atom molecule,71 while Sugisawa
et al.14 build a Gaussian process model for a protonated imidazole
dimer, corresponding to a 51-dimensional PES. Glick et al. use a
pairwise neural network to achieve high accuracy in the descrip-
tion of intermolecular terms,15 while Metcalf et al. tackle directly the
problem of predicting interaction energies by learning terms com-
puted by symmetry-adapted perturbation theory decomposition.16

In Ref. 17, Sauceda et al. compare gradient-domain machine learn-
ing with conventional force fields to achieve a more efficient imple-
mentation of molecular PES. In the condensed phase, the focus is
on transferability. Rowe et al.18 present an extremely robust poten-
tial for carbon, while George et al. discuss how one can simultane-
ously improve the accuracy of vibrational frequency predictions and
the transferability of machine-learning potentials.19 Sinz et al., in
Ref. 20, apply wavelet scattering transform to build potentials for
both molecular and condensed phase systems, which can main-
tain high levels of accuracy even when working in an extrapolative
regime.

C. Machine learning for meso-scale models
Inspired by the success in the learning of accurate potential

energy functions for atomistic systems from quantum mechanical
calculations, similar tools have been used also to learn effective mod-
els at reduced resolutions. In particular, in Ref. 21, Wang et al. use a
kernel based approach to learn a coarse-grained (CG) force field and
illustrate the method on the molecular dynamics simulation of two
peptides. In the same spirit, dual graph convolution neural networks
are used by Ruza et al. in Ref. 22 to design temperature transfer-
able CG force fields of ionic liquids. The reverse problem, that is,
backmapping from a CG representation to an atomistic description,
has also been tackled with machine learning: an approach based on
generative adversarial networks has been proposed23 for backmap-
ping CG macromolecules. The key to the success of machine learned
CG force fields lies in the flexible representation of the multibody
terms. This is also illustrated by the work of Boattini et al.24 on the
modeling of interaction potentials between elastic spheres through
symmetry functions. The representation of complex molecular sys-
tems as a function of just one or a few collective coordinates for the
study of rare events can also be seen as a type of coarse-graining (or
model reduction), and machine-learning methods have been applied
in this domain as well. Rabben et al.25 show how a neural network
can be used to represent dynamical systems by the linear Koopman
operator for the study of rare events. Efficient model reduction of
complex chemical reactions can also be performed by combining
neural networks with multiscale modeling.26 Additionally, analyt-
ical forms for the classical free energy functional of fluids can be
obtained by using an “Equation Learning Network,” as presented in
Ref. 27. Finally, hydration free energy can be learned with a kernel-
based approach, as shown by Rauer and Bereau.28 These authors also
examine how the database bias affects the results.

D. Machine learning meets electronic structure
Substantial progress has been reported regarding the use of

machine learning for the study of quantum properties of molecules
or materials. In Ref. 29, Fabrizio et al. have successfully developed
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and applied machine learning to correct the electronic potential
energy dependency on the electron number for optimal tuning of
long-range corrected functionals. Molecular dipole moment predic-
tions based on a combination of machine-learned atomic partial
charges and atomic dipole moments has been studied by Veit et al.30

The machine learning based modeling of dielectric constants in crys-
tals has been introduced,31 as well as kinetic energy density fitting
for orbital-free density functional theory (DFT), comparing linear
to Gaussian process regression (GPR).32 Deep neural networks have
been used by Westermayr and Marquetand to predict UV absorp-
tion spectra throughout chemical compound space (SchNarc)33 as
well as by Gastegger et al. for molecular wave functions in mini-
mal basis sets34 and by Qiao et al. for predicting single determinant
properties throughout compound space using symmetry-adapted
atomic-orbital features (OrbNet).35 Modeling Frenkel Hamiltonian
parameters for accelerated exciton dynamics36 has benefited from
machine learning, as well as electron correlation models based on
frozen core approximations.37

E. Sampling structural landscapes
The longstanding problem of sampling the high-dimensional

configurational space of complex molecular systems can also be
tackled by machine learning, for example, in the form of “active
learning” schemes that use existing information to propose new
data-points and streamline the construction of training sets. In this
context, Wang and Tiwary38 analyze their recently proposed RAVE
algorithm that combines machine learning and molecular dynam-
ics for enhanced sampling. Dutta and Sengupta39 use a Bayesian
approach combined with expectation maximization to learn free
energy surfaces and transition states of high dimensional systems
while Mancini et al.72 use an evolutionary algorithm to reach for
low-lying conformers. Active learning is used also by Zhai et al.40

to obtain optimal structural datasets for the training of multibody
potential energy functions with quantum accuracy. In similar vein,
Karabin and Perez41 create diverse structural datasets for learning
interatomic potentials with an entropy-maximization approach. In
Ref. 42, the data for the design of Gaussian Process Regression
(GPR) models are generated through an adaptive sampling proce-
dure, while in Ref. 43, the data generation is combined with a GPR
for the construction of potential energy surfaces. Virtual reality is
also used in combination with neural networks to generate data for
the training of potential energy surfaces.44 Schran et al.45 identify the
relevant configurations for model training and control the general-
ization error by using committee models. In Ref. 46, Lindsey et al.
use cluster analysis and Shannon information theory for the gener-
ation of robust training sets for machine learned force-fields. The
active learning approach itself is examined in Ref. 47 to evaluate
the suitability of a model to propose structural candidates with the
desired properties.

F. Applications
As anticipated in the Introduction of this Editorial, one of the

clearest signals of the maturation of the field is the fact that several
contributions are not about the development of new machine-
learning methods but rather on their use to perform atomistic stud-
ies of diverse and relevant systems of interest. Important contribu-
tions include acetaldehyde in atmospheric processes,48 mechanical

properties of solid platinum,49 copper clusters at zinc surfaces,50

energy transfer in vibrationally excited CO,51 Si crystal growth,52

boron cage effects on Nd–Fe–B crystal structure’s stability,53 the
structure of chalcogen overlayers on Au-surfaces,54 shear induced
ordering in colloidal systems,55 and self-diffusion56 as well as struc-
tural and thermodynamic properties57 in Lennard-Jones fluids.
Several contributions demonstrate how machine learning can con-
tribute to elucidate the behavior of water. From the dielectric con-
stant in the supercritical fluid58 and the temperature dependence
of nuclear quantum effects in the liquid59 all the way to the struc-
ture and thermodynamics of the liquid/vapor interface,60 machine
learning brings first-principles accuracy to the determination of the
properties of one of the most studied systems in chemical physics.
Methodological work has also been contributed: Daly and Hernan-
dez report on the prediction of organismal viability from sparse
data,61 Houchins and Viswanathan describe a calculator for cathode
optimization of Li-ion batteries,62 Tran et al. describe multi-fidelity
methods for uncertainty quantification and Bayesian optimization
for materials design of ternary random alloys,63 and Muraro et al.
report on a combined machine learning and quantum chemistry
protocol to account for radical scavenging activity of bio-active
molecules.64 A different twist on interatomic potentials is given by
Liu et al.,65 who use machine learning to rationalize the parameter
space of Buckingham potentials for silica.

Even though the majority of contributions are directly associ-
ated with atomistic modeling, some papers stand out for the original
way they incorporate data-driven techniques into other realms of
chemical physics: Chang and Medford classify and predict the ener-
getics of biomass reactions,66 while Deng et al. solve inverse prob-
lems in quantum dynamics by Bayesian optimization.70 Namba et al.
optimize the parameters of an experimental setup to align molecules
using laser beams.67 Hassan uses neural networks for the inverse
design of nanoparticles.68 Finally, Kratz and Kierfeld use image
recognition to improve the speed and accuracy of pendant drop ten-
siometry,69 demonstrating the level at which machine learning has
also become valuable for experimental applications.

III. CONCLUSIONS
The application of machine-learning techniques to chemical

physics has grown past the point of proof of principle. From the
more established applications to theoretical chemistry and simula-
tions to more recent experiments, the work collected in this issue
shows that data-driven approaches—although not yet routine—are
now part of the tools of the trade, and their use in applications
has become quite natural, and can no longer be called novel. The
growing understanding of how machine-learning methods should
be adapted to the specific requirements of the field is making them
more effective and easy to use. We observe a trend to combine them
with electronic-structure theory, and more in general with physics-
based approaches, getting the best features out of the two paradigms.
Machine learning and chemical physics have met, and it seems like
they will stay together for the foreseeable future. The enormous
potential of this union has been already extensively demonstrated,
but we do not think it has yet been fully realized. We look forward
with anticipation to the next conceptual advances and exciting appli-
cations, and we expect to read about many of these on the pages of
this journal.
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