dc.contributor.author
Xu, Shaohui
dc.contributor.author
Bhatia, Sumati
dc.contributor.author
Fan, Xin
dc.contributor.author
Nickl, Philip
dc.contributor.author
Haag, Rainer
dc.date.accessioned
2022-03-28T10:01:16Z
dc.date.available
2022-03-28T10:01:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34166
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33884
dc.description.abstract
Molybdenum disulfide (MoS2) holds great promise for antibacterial applications owing to its strong photothermal performance and biocompatibility. Most of its antibacterial explorations have sought enhanced antibacterial potency through designing new hybrid inorganic materials, the relationship between its physiochemical properties and antibacterial activities has yet to be explored. This work is the first to investigate the combination effects of different sized and functionalized MoS2 sheets on their antibacterial activities. The bacterial capture abilities of 3 µm mannosylated, galactosylated, and glucosylated sheets, as well as 300 nm mannosylated sheets, all with similar sugar densities, are compared. Only mannosylated MoS2 sheets are found to agglutinate normal Escherichia coli (E. coli) and large mannosylated MoS2 sheets show the strongest E. coli agglutination. Despite slightly weaker photothermal performance under near-infrared (NIR) laser irradiation, large mannosylated MoS2 sheets exhibit higher antibacterial activity than the smaller sheets. By much stronger specific multivalent binding, large sheets capture E. coli more efficiently and compensate for their reduced photothermal activity. Besides providing a facile approach to eliminate E. coli bacteria, these findings offer valuable guidance for future development of 2D nanomaterial-based antibacterial agents and filter holder materials, where large-functionalized sheets can capture and eliminate bacteria powerfully.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
antibacterial
en
dc.subject
multivalent interactions
en
dc.subject
near infrared
en
dc.subject
photothermal
en
dc.subject
polyglycerol
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Glycosylated MoS2 Sheets for Capturing and Deactivating E. coli Bacteria: Combined Effects of Multivalent Binding and Sheet Size
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2102315
dcterms.bibliographicCitation.doi
10.1002/admi.202102315
dcterms.bibliographicCitation.journaltitle
Advanced Materials Interfaces
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.1002/admi.202102315
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2196-7350
refubium.resourceType.provider
WoS-Alert