dc.contributor.author
Gluza, Marek
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2022-08-24T12:30:31Z
dc.date.available
2022-08-24T12:30:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34145
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33863
dc.description.abstract
Quantum simulations with ultracold atoms in optical lattices open up an exciting path toward understanding strongly interacting quantum systems. Atom gas microscopes are crucial for this as they offer single-site density resolution, unparalleled in other quantum many-body systems. However, currently a direct measurement of local coherent currents is out of reach. In this Letter, we show how to achieve that by measuring densities that are altered in response to quenches to noninteracting dynamics, e.g., after tilting the optical lattice. For this, we establish a data analysis method solving the closed set of equations relating tunneling currents and atom number dynamics, allowing us to reliably recover the full covariance matrix, including off-diagonal terms representing coherent currents. The signal processing builds upon semidefinite optimization, providing bona fide covariance matrices optimally matching the observed data. We demonstrate how the obtained information about noncommuting observables allows one to quantify entanglement at finite temperature, which opens up the possibility to study quantum correlations in quantum simulations going beyond classical capabilities.
en
dc.format.extent
19 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Bosons Transport phenomena
en
dc.subject
Entanglement detection
en
dc.subject
Entanglement measures
en
dc.subject
Nonequilibrium statistical mechanics
en
dc.subject
Optical lattices & traps
en
dc.subject
Optimization problems
en
dc.subject
Quantum benchmarking
en
dc.subject
Quantum correlations in quantum information
en
dc.subject
Quantum entanglement
en
dc.subject
Quantum quench
en
dc.subject
Quantum simulation
en
dc.subject
Quantum tomography
en
dc.subject
1-dimensional systems
en
dc.subject
2-dimensional systems
en
dc.subject
3-dimensional systems
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Recovering Quantum Correlations in Optical Lattices from Interaction Quenches
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
85942
dcterms.bibliographicCitation.articlenumber
090503
dcterms.bibliographicCitation.doi
10.1103/PhysRevLett.127.090503
dcterms.bibliographicCitation.journaltitle
Physical Review Letters
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.originalpublishername
American Physical Society
dcterms.bibliographicCitation.originalpublisherplace
College Park, MD
dcterms.bibliographicCitation.volume
127 (2021)
dcterms.bibliographicCitation.url
https://link.aps.org/doi/10.1103/PhysRevLett.127.090503
dcterms.rightsHolder.url
https://journals.aps.org/copyrightFAQ.html#free
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0031-9007
dcterms.isPartOf.eissn
1079-7114