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Recovering quantum correlations in optical lattices from interaction quenches

Marek Gluza1, ∗ and Jens Eisert1, 2, †

1Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
2Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany

Quantum simulations with ultra-cold atoms in optical lattices open up an exciting path towards understanding
strongly interacting quantum systems. Atom gas microscopes are crucial for this as they offer single-site density
resolution, unparalleled in other quantum many-body systems. However, currently a direct measurement of
local coherent currents is out of reach. In this work, we show how to achieve that by measuring densities
that are altered in response to quenches to non-interacting dynamics, e.g., after tilting the optical lattice. For
this, we establish a data analysis method solving the closed set of equations relating tunnelling currents and
atom number dynamics, allowing to reliably recover the full covariance matrix, including off-diagonal terms
representing coherent currents. The signal processing builds upon semi-definite optimization, providing bona
fide covariance matrices optimally matching the observed data. We demonstrate how the obtained information
about non-commuting observables allows to lower bound entanglement at finite temperature which opens up the
possibility to study quantum correlations in quantum simulations going beyond classical capabilities.

Quantum simulation experiments with ultra-cold atoms [1]
have lead to numerous insights into the physics of strongly
correlated quantum systems, both in static [2–5] and in dy-
namical [6–14] regimes. It is fair to say that there has
been steady progress towards realizing the ambitious long-
term goals set for quantum simulators [15]. Among them,
the quest for understanding the precise mechanism underly-
ing the physics of high-Tc superconductors may take a par-
ticularly important role, driving forward significant experi-
mental progress on quantum simulations with fermionic sys-
tems [16–23]. In this line of research, achieving sufficiently
cold temperatures is key and recently exciting progress has
been reported, signified by an observation of very large anti-
ferromagnets [16] with substantial evidence of string patterns
[24]. Thanks to advances towards alleviating this particular
bottleneck [25], it may in turn become a make or break issue
to develop diagnostic tools regarding genuine quantum corre-
lations in such systems. Specifically, one can anticipate that
not only methods for identifying the presence of entanglement
will be needed, which can be done via entanglement witness-
ing, but it will be instrumental to have ways of unambiguously
answering the overall physical question of how much entan-
glement is there in a given quantum many-body system at fi-
nite temperature. Tools making this precise, providing cer-
tification in this sense [26], should then offer to understand
the role of quantum mechanical effects on the conductance
of systems that have so far evaded modelling using numerical
calculations.

In this work, we set out to present diagnostic tools capa-
ble of tackling exactly these questions. They are based on
information that is feasibly available via the so-called atom
gas microscope [27–29]. Once this innovation had arrived, it
allowed to observe string-order [3–5, 16], time-dependent fea-
tures of ordered [2, 6–9, 13, 30] and disordered models [31].
It should be stressed that these observations would have been
much more limited without the atom gas microscope, say us-
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ing just time-of-flight type measurements. The atom micro-
scope has a strong limitation, however, as at any given time it
provides information only about the local atom density, which
can be captured in terms of commuting operators in a quantum
mechanical model. Because of that – possibly surprisingly –
exploring quantum correlations in optical lattices is by far not
straightforward.

In order to access expectation values of a set of non-
commuting observables one must include some additional op-
erations besides state preparation and direct measurements.
Tomographic schemes employing measurements along a sin-
gle quantization axis in conjunction with Bloch sphere rota-
tions constitute the simplest example. In optical lattices, a so-
phisticated interference protocol [7] has been demonstrated to
reveal entanglement, but it is applicable to only small systems
(see also Ref. [32]). Exploiting known time evolution in con-
junction with feasible measurements in recovery protocols in
a general sense has been explored previously in Refs. [33–45].

As we will show here, observing the density at various
times after an interaction quench into a super-lattice enables
new insights: It allows to recover expectation values of non-
commuting observables and quantify entanglement at finite
temperature. This can give clues as to why a given system
has a particular value of conductivity and what are the mi-
croscopic mechanisms at play in the quantum system stud-
ied. Put differently, understanding quantum correlations can
allow for physical insights beyond the specific values of sys-
tem parameters measured by linear-response. Linear-response
measurements can be done both in quantum simulators and in
materials. Concerning the latter, it has been possible to realize
superconducting states at very high temperature. If this will be
done in optical lattices then by our method or its possible ex-
tensions it will be possible to investigate the role of coherent
quantum mechanical effects in the system. This is typically
not possible in materials and in fact access to sophisticated
quantum observables can become one of the most important
strengths of quantum simulations in optical lattices [15].

Setting. The physical setting we have in mind is that of
fermionic atoms in optical lattices [19, 20]. That said, the
technique carries over with litte modification to any system in
which excitation measurements and non-interacting dynamics
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are accessible. The discussion focuses on systems in one spa-
tial dimension, but it should be clear that similar ideas carry
over to higher-dimensional lattices. It is also worth point-
ing out that to an extent similar ideas have already proven
highly useful and experimentally feasible in continuous quan-
tum field settings provided by cold bosonic atoms trapped on
an atom chip [33]. Notation-wise, we denote fermionic anni-
hilation operators associated with some degree of freedom at
lattice site x by f̂x. We put a focus on fermionic systems here
but stress that the same machinery works similarly for bosons
as well. The annihilation operators obey the canonical anti-
commutation relations {f̂x, f̂†y} = f̂xf̂

†
y + f̂†y f̂x = δx,y . The

covariance matrix Γ of a state %̂ is defined as the collection of
second moments given by

Γx,y = 〈f̂†xf̂y〉%̂ := tr[f̂†xf̂y%̂] . (1)

This matrix is in general a complex matrix Γ ∈ CL×L, L
being the system size1. Additionally, we have Γ = Γ† which
means that it can be unitarily diagonalized by a Bogoliubov
transformation of the type

p̂k =

L∑
x=1

U∗k,xf̂x (2)

such that Γ̃ = UΓU† with Γ̃k,k′ = 〈p̂†kp̂k′〉%̂ is diagonal.
Noting that n̂k = p̂†kp̂k are the number operators of the
eigen-modes p̂k we have that Γ̃ = diag(λ) has eigenvalues
0 ≤ λk ≤ 1 by the Pauli principle. It is useful to write A � B
ifA−B is a matrix with a non-negative spectrum which yields

0 � Γ � 1 . (3)

This is a convex constraint that will be included in our re-
constructions using semi-definite programming methods [46].
Due to statistical noise, a direct estimate Γ(est) of a covari-
ance matrix Γ may not fulfill this constraint, but the recovery
procedure should find a physical covariance matrix and hence
taking into account Eq. (3) aids the reliability of the method.

A non-interacting fermionic (free) evolution conserving the
particle number is generated by quadratic Hamiltonians

Ĥ(h) =

L∑
x,y=1

hx,y f̂
†
xf̂y (4)

where h = h† ∈ CL×L is the coupling matrix. Most impor-
tantly, hopping on a line is captured by

ĤNN =

L−1∑
x=1

f̂†xf̂x+1 + h.c. (5)

1 If it was possible to directly measure currents then one would measure
Re[Γx,y ] = 1

2
〈f̂†x f̂y+f̂†y f̂x〉%̂ and Im[Γx,y ] = − i

2
〈f̂†x f̂y−f̂†y f̂x〉%̂ (the

latter vanishes oftentimes given appropriate symmetries in the system).

where we use natural units in terms of the tunnelling time
throughout the note. The Heisenberg evolution of mode oper-
ators reads

f̂x(t) = eitĤ(h)f̂xe
−itĤ(h) =

L∑
y=1

G∗x,y(t)f̂y (6)

where G∗(t) = e−ith is the propagator matrix which can be
computed efficiently in the system size L. Using Eq. (6) we
see that the covariance matrix at time t is

Γ(t) = G(t)Γ(0)G(t)† . (7)

The geometry of the lattice is encoded in the propagator G
and by Eq. (7) is imprinted in the correlations. Our recovery
method can be formulated independent of specifics of the lat-
tice geometry. However, for clarity only, we shall apply it to
the setting of most immediate practical interest, namely for a
chain with open boundary conditions (5).

Tomographic read-out from interaction quenches. The core
idea for reconstructing the covariance matrix Γ is the follow-
ing protocol. The first step is to prepare the state of interest:

(a) Prepare a fermionic state %̂. (8)

Indeed, we do not have to know anything about how the state
is prepared precisely, specifically, whether during the prepara-
tion there are non-trivial interactions between the particles or
not. The preparation, provides a density matrix and we would
like to reconstruct the second moments Γ of the possibly non-
Gaussian state %̂. In the second step, the task is:

(b) Quench to a free Hamiltonian Ĥ(hQuench) . (9)

The ensuing coherent evolution should mix the information
about the currents into the occupation numbers dynamics.
This quench should be rapid in terms of the tunnelling times
(which in practice means for ultra-cold atomic experiments
that one resorts to narrow Feshbach resonances), but does not
have to be perfect. Finally, using the atom microscope, assess
the occupation numbers N̂x = f̂†xf̂x

(c) Measure Nx(t) := 〈N̂x〉%̂(t) . (10)

The complete tomographic protocol consists of performing
the steps (a-c) for times t = t1, t2, . . . , tK , which can be cho-
sen to be equidistant.

This prescription is at this point kept general on purpose,
as it can be implemented in various setups and accordingly
various quench Hamiltonians Ĥ(hQuench) are possible. In this
main text, we show that a suitable such choice is

Ĥ(hQuench) = ĤNN +
∑
x

µxN̂x (11)

where µx = x represents a gradient of the chemical potential.
Additional simulations presented in the appendix demonstrate
that quenches into a doubled-up lattice or involving artificial
magnetic fields can be also advantageous, in settings where
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FIG. 1. Tomographic reconstruction. a) Input data for the recon-
struction based on out-of-equilibrium data of local particle numbers
Nx(ti) measured at K = 10 equidistant times after the quench to
nearest-neighbour hopping in the tilted lattice. We model statistical
fluctuations by sampling occupation numbersNShots = 103 times for
each ti and estimating Nx(ti) via the empirical mean. b) The input
data have been obtained by evolving a thermal covariance of ĤNN

with inverse temperature β = 3 such that there are relatively large
currents to be recovered. c) Results of the reconstruction Γ(Rec). The
extent of deviations shown in the inset is max |Γx,y −Γ

(Rec)
x,y | ≈ 0.1

and is explained by the fact that among the data some Nx(ti) can
fluctuate statistical by two or three standard deviations.

this is feasible. This works because in (c) we are acquiring
information about currents due to the equation

Nx(t) = Γx,x(t) =

L∑
y,y′=1

Gx,y(t)G∗x,y′(t)Γy,y′(0) . (12)

We find that generically the right-hand side will depend on
the off-diagonal matrix elements in the initial covariance ma-
trix. The reconstruction procedure makes use of the reversed
direction of this equality and can be intuited as harvesting in-
formation about the currents from the response of the particle
number dynamics following the quench.

The reconstruction is based on an algorithm that in a nut-
shell takes a guess for the covariance matrix Γ′, evolves for-
ward to the times ti where the particle number data has been
measured and checks whether the extrapolated distribution
of the particles Nx(ti; Γ′) = Γ′x,x(ti) reproduces the data
Nx(ti; Γ′) ≈ Nx(ti). In the next step, an improved guess
Γ′′ is obtained, such that the new observables Nx(ti; Γ′′) are
closer to the data

|Nx(ti; Γ′′)−Nx(ti)| ≤ |Nx(ti; Γ′)−Nx(ti)| . (13)

By iterating this, the algorithm solves the following optimiza-
tion task. We collect all measured data into a vector b, and

define a linear map A which from an input covariance matrix
Γ′ produces the respective occupation numbers Nx(ti; Γ′) in
the same ordering as in b. The reconstruction Γ(Rec) is the op-
timal solution to the optimization problem

min
0�Γ′�1

‖A(Γ′)− b‖2 . (14)

The cost function is the 2-norm so we need to perform a least-
square recovery problem with a positivity constraint [46].
Convexity of the problem guarantees an efficient convergence
to a globally optimal solution with a polynomial runtime in
the system size L and desired accuracy ε > 0 [46] and in
practice takes a few seconds for L ≈ 40.

To exemplify the functioning of the method we consider
thermal states %̂β = e−βĤNN/Zβ , where Zβ is the partition
function, β > 0 is the inverse temperature and Γ(β) is the
corresponding covariance matrix. The results of the numeri-
cal reconstruction [47] are presented in Fig. 1. The particle
number measurement need not be perfect and Fig. 1 discusses
reconstructions that include statistical noise from necessarily
finite numbers of measurements.

In step (a), additional assumptions can be included such
as translation invariance in the initial state or a finite corre-
lation length. The quench is motivated by existing control
functionalities, see, e.g., Ref. [48] for an experimental study
showcasing a superb degree of coherence in the system when
tilting the optical lattice. We remark that other quenches that
lead to non-trivial dynamics (the covariance matrix is not a
steady state of the quench Hamiltonian) can be considered.
The reconstruction code [47] does not depend on the quench
Hamiltonian being nearest-neighbour, or whether there is a
trap present so other variants are possible, see the appendix.
If the couplings h are real, then the tomography reconstructs
only the real part of the currents. This is enough for ther-
mal states of quadratic Hamiltonians with no magnetic fields,
see the appendix for reconstructions in their presence. Fi-
nally, note that similar ideas have successfully been applied in
an atom chip experiment for a continuum system [33] where
some unknown stray interactions have been present [49] but
have been negligible in short time windows.

Quantum simulation studies of low-temperature systems in
presence of Hubbard interactions with strength U are of par-
ticular interest. Our method can be used to measure the second
moments of interacting states by switching-off U 7→ 0 as fast
as possible, e.g., by choosing narrow Feshbach resonances,
see the appendix for comparisons of ramps of varying dura-
tion compared to the tunnelling time. Crucially though, it fol-
lows directly from the Lieb-Robinson bound [50] that even if
the quench has a finite duration then only the local correlations
will be affected but, e.g., the presence of long-range order can
be reliably inferred. If the quench has a negligible duration
compared to the relevant time-scales in the system then even
local correlations will be faithfully reconstructed implying the
possibility of measuring also the kinetic energy in addition to
the Hubbard interaction term that can be measured with the
atom microscope. Our method does not assume translation
invariance or thermality of the unknown state which are the
corner stones but also limitations of existing methods [51–58]
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and hence can pave the way towards reading out the results
of variational quantum simulations [59] in optical lattices for
systems with a complicated connectivity graph.

Quantitatively estimating fermionic mode entanglement.
Let us now show how to analyze the second moments Γ of
a possibly interacting or non-equilibrium state to lower bound
the so-called entanglement cost [60, 61]. This statement is
particularly appealing as it goes beyond merely showing that
there is entanglement present, but provides an answer to the
question of “how much” entanglement is there in the sys-
tem [62–65]. The entanglement cost EC quantifies mixed-
state entanglement [60, 61] as it is the asymptotic rate at which
maximally entangled pairs must be used for the creation of a
given state %̂ using local operations with classical communica-
tion (LOCC). EC is broadly studied in quantum information
theory but is not easy to access in practice and therefore, es-
pecially in context of experiments, lower bounds by means of
practically measurable quantities are needed.

We consider %̂ to describe a bipartite system A ∪ B, e.g.,
some number of sites in an optical lattice, and will explain
how to lower bound EC(%̂). Firstly, if the asymptotically
optimal creation of the state %̂ via LOCC necessitates maxi-
mally entangled pairs at rate EC(%̂) then it could be that even
more entangled pairs are needed for a system consisting of
fermionic particles. Indeed, any physical operation in this
case is subject to the fermionic parity and total number super-
selection rules (SSR) [66, 67] which further restrict LOCC.
However, in Ref. [68], it has been shown that the asymp-
totic rates do not change, i.e., ESSR

C (%̂) = EC(%̂) (see the
appendix). Secondly, we use that entanglement cost is lower
bounded by distillable entanglement ED [60, 61]

EC(%̂) ≥ ED(%̂) . (15)

In fact, in our discussion, we can equally well also refer to the
distillable entanglement. Thirdly, the distillable entanglement
is lower bounded by virtue of the hashing bound [69]

ED(%̂) ≥ S(%̂A)− S(%̂), (16)

where for any state σ̂ the von Neumann entropy is S(σ̂) =
− tr[σ̂ log2(σ̂)] and the subscript in %̂A indicates the the re-
duction to subsystem A. Finally, the right hand side can be
lower bounded by the same expression but now in terms of
Gaussian entropies. Specifically, let us denote by S(Γ) =
S(%̂Γ) to be the von Neumann entropy of a fermionic Gaus-
sian state %̂Γ with the same second moments Γ as %̂. As shown
in Refs. [70, 71] we have

S(%̂A)− S(%̂) ≥ S(ΓA) − S(Γ) := EG(Γ) . (17)

The Gaussian entropy S(Γ) can be easily computed from the
recovered covariance matrix Γ(Rec), see the appendix for de-
tails. Summarizing, for any bipartite state %̂ whose second
moments Γ one can measure using our method we have found
a lower bound to the entanglement cost EG(Γ) ≤ EC(%̂).

Entanglement cost at finite temperatures. In what follows
we discuss the application of the witness to again assess ther-
mal states of ĤNN. As detailed in the appendix without in-
creasingEC we can perform a local unitary Bogoliubov trans-
formation in subsystems A and B individually. In Fig. 2a)

FIG. 2. Entanglement cost at finite temperature. a) The covari-
ance matrix Γ(D) = UDΓ(β)U†D for the inverse temperature β = 3
after a suitable local transformation UD = UA ⊕ UB preserving the
entanglement. The inset shows the sub-matrix of the covariance ma-
trix reflecting one mode in subsystem A and one in B. b) This figure
shows how the lower bound for the entanglement depends on whether
it is applied on one or two modes in systems A and B each. Select-
ing merely one mode each provides a positive entanglement cost for
relatively large temperatures (E(1+1)

G ), while two modes are better
suited to detect entanglement at low temperatures (E(2+2)

G (β)).

we show the covariance matrix for β = 3 after such a local
transformation showing that essentially two modes are non-
trivially correlated. In Fig. 2b) we depict the entanglement
cost lower bound EG(β):=EG(Γ(β)) as a function of inverse
temperature. We select either one or two modes in each sub-
system and find a non-trivial lower bound EG(β) > 0 for
sufficiently low temperatures. Choosing one mode gives a
non-trivial lower bound for higher temperatures than for two
modes because the total entropy in the latter case tends to be
larger at high temperature. In contrast, at extremely low tem-
peratures, the one mode lower bound saturates at its maximum
value E(1+1)

G (β) ≤ 1 while the two mode witness indicates
that the entanglement cost of preparing %̂β is asymptotically
larger than that of one maximally entangled pair. Going be-
yond the Gaussian case, note that the second moments of low-
temperature states will vary continuously with the strength of
the many-body interaction [72]. Thus we can be confident
that a non-trivial EC lower bound will be obtained for suffi-
ciently weak interactions and low temperatures. Such states,
e.g., in two spacial dimensions become difficult to treat nu-
merically in practice, however, our reconstruction and entan-
glement quantification methods remain applicable for quan-
tum simulations.

Outlook. In this work, we have shown how to recover
the full covariance matrix of quantum states in optical lat-
tices by unifying atom microscope measurements with suit-
able quenches and performing efficient reconstructions using
semi-definite programming. The method introduced here is
reliable and versatile as it does not depend on the geome-
try of the quench: Other ways of inducing visible particle
number dynamics specific to a given setup can also be con-
sidered and some other ideas are discussed in the appendix.
The prospect of advancing our data analysis by making use of
recent theoretical ideas such as shadow estimation [45] or ran-
dom operations that can be efficiently classically back-tracked
[34, 73] should also be noted. Building on the accessibility of
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full covariance matrices, including coherent currents, we have
exploited an entropic witness that allows to lower bound the
entanglement cost and the distillable entanglement. This is
a quantitative measure of entanglement implying a substan-
tially stronger statement than merely showing its presence.
We have shown that our witness can give non-trivial values
at finite temperatures. This will remain true also for weak in-
teractions as second moments should vary continuously in the
strength of interactions. We hence, have established a method

to recover and quantify quantum correlations in optical lat-
tice quantum simulations which is applicable even in regimes
where numerical calculations cease being practical.
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APPENDIX

This appendix provides substantial detail of the arguments
of the main text, and corroborates the conclusions drawn there
by further analysis. It is organized as follows. In Section A,
we provide additional statistical and systematic analysis if the
“tilting” protocol presented in the main text. We also show
the results of recoveries based on two other examples of initial
conditions, this time non-translation invariant. In Section B,
we discuss an additional protocol based on doubling of the
optical lattice. In Section C, we provide more simulations
testing a line of ideas for other protocols. In Section D, we
introduce some ideas for benchmarking in the experiment the
doubling protocol, with the aim to experimentally infer how
well it works. In Section E, we show additional simulations
for the analysis of finite durations of switching off the inter-
actions in a Hubbard chain. Finally, in Section F, we go into
great detail presenting further material on the entropic entan-
glement witness presented in the main text and its numerical
evaluation.

Appendix A: Additional reconstructions

1. Analysis of performance for finite sample sizes and
single-shot statistics

In this section, we provide a description of the procedure
we have used to simulate the single-shot outcomes, beyond
the mere use of expectation values. This is motivated by ex-
periments employing the atom microscope, e.g., the expecta-
tion value 〈N̂x(t)〉 ≈ 0.5 has to be estimated by averaging a
series of individual outcomes which are either 0 (particle is
absent) and 1 (particle is present). We next describe how to
simulate such single-shot measurements.

At a fixed time t > 0, the occupation number operators
commute [N̂x(t), N̂y(t)] = 0, a feature that implies that the
measurement of one does not influence the measurement out-
come of the other. For this reason, the single-shot outcomes
of the measurement of each N̂x(t) can be “parallelized” and
obtained from the reduced density matrix on the mode located
at x. This is a 2× 2 matrix which can be taken to be

%̂x(t) = diag(p, q) :=

(
〈N̂x(t)〉 0

0 1− 〈N̂x(t)〉

)
. (A1)

Thus, to simulate the outcomes of atom number mea-
surements at a position x and time ti in the optical lat-
tice in Nsample(ti) experimental runs we can simply sample
Nsample(ti) times from the Bernoulli distribution with

p = 〈N̂x(ti)〉. (A2)

Performing this step for all lattice sites, we obtain a simula-
tion of the random outcomes of the measurements in the entire
system. Finally, this should be repeated for each measurement
time ti to simulate the what would be the outcome of an exper-
iment. In order to assess the performance of the tomographic

recovery procedure, we iterate over all times ti and positions
x and compute the empirical estimate of the mean particle
number

〈N̂x(ti)〉 ≈
1

Nsample(ti)

Nsample(ti)∑
j=1

N (j)
x (ti) (A3)

where N (j)
x (ti) ∈ {0, 1} is the j-th outcome of either having

or not having the particle at position x and time ti. The esti-
mated atom numbers Nx(ti) are then taken as the input to the
reconstruction.

We then repeat this approach a sufficiently large number of
times and each time we run the tomography. The finite num-
ber of single-shot outcomes leads to statistical errors in the
estimation of the genuine expectation values 〈N̂x(ti)〉 which
then propagates into the fidelity of the reconstructed matrix.
What we find is that generically the noise leads to the intro-
duction of stray off-diagonal correlations as shown in the main
text, while the overall correlation pattern for entries of the co-
variance matrix of substantial magnitude are not overturned
by noise. For example, for NTotal = 10.000 total state prepa-
rations distributed over NTimes = 10 measurement times we
find that the relevant currents in the thermal covariance ma-
trix of the nearest-neighbour Hamiltonian can be clearly dis-
cerned with good signal to noise ratio. These parameters have
been used in the reconstruction result shown in the main text
based on a random sample of occupation numbers. In Fig. 3,
we show the cumulative results after running the tomography
500 times to assess the typical and worst-case results of the
procedure. We show that repeating the procedure many times
it is possible that a rare event can happen in that a matrix el-
ement of the reconstructed covariance matrix will largely de-
viate from the true value. However, such rare events are just
a result of random sampling repeated many times (unlikely
but possible events will happen eventually if one tries suffi-
ciently often) and most results concentrate around the median
or mean taken over the maximal deviations.

2. Dependence on the number of measurement times

Another aspect to consider, one we dedicate this section to,
is how to best choose the discrete and equally spaced mea-
surement times. There are two parameters to consider when
working with equidistant times. These are on the one hand
the total evolution time T and on the other hand the number
of measurement timesK. The quench evolutions that we con-
sider in this work feature an effective causal cone confined by
the Lieb-Robinson bound [74], which in turn is implied by the
locality of the Hamiltonian

|Gx,y(t)| ≤ CLRe
−|x−y|+vLRt. (A4)

Here, we have denoted by vLR > 0 the Lieb-Robinson veloc-
ity. For this reason one can develop an intuition that the total
evolution time should be sufficiently long such that the par-
ticle number dynamics in the relation discussed in the main
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FIG. 3. Dependence of the reconstruction fidelity on the sam-
pled atom occupation numbers. For each run j = 1, . . . , 500
of the tomography we consider the maximal deviation ∆Γ(j) =

max |Γx,y−Γ
(Rec,j)
x,y | of the reconstructed covariance matrix Γ(Rec,j)

from the true covariance matrix Γ. In panel a), we show the mean
(Ej [∆Γ(j)]) and median (Median[∆Γ(j)]) of the maximal deviation
in dependence of the total number of experimental runs. The pres-
ence of large maximal deviation (max[∆Γ(j)]) can be explained by
the many repetitions of the reconstruction procedure and as is shown
in the histograms in panel b) most results concentrate around the
mean and median while the large deviations happen only rarely.

text

Nx(t) =

L∑
y,y′=1

Gx,y(t)G∗x,y′(t)Γy,y′(0) (A5)

≈
L∑

|y−x|≤2vLRt

L∑
|y′−x|≤2vLRt

Gx,y(t)G∗x,y′(t)Γy,y′(0)

(A6)

has a chance to be large. Here, the approximation made has
neglected the exponentially suppressed terms in the radius of
an enlarged Lieb-Robinson cone dLR cone(t) = 2vLRt. For this
reason, it seems that the evolution time T > 0 should be large
enough such that the influence of the relevant currents is not
exponentially suppressed. Even for ideal data, in such a case
a reconstruction should be possible in principle, but issues of
numerical stability can come into play and either way, in the
presence of statistical noise one wants to have as visible dy-
namics as possible. Fig. 4 shows the result for T = 15 and
L = 10. We have performed a tomographic recovery based
on measurements taken at varying interval spacing with the
intention to see how the time spacing of the measurements in-
fluences the quality of the reconstruction. As we see, quite
quickly the reconstruction becomes accurate and the relevant
currents narrow down around their true values.

3. Reconstruction of a disordered initial state

In the example discussed in this section, we consider a ther-
mal state of the Anderson insulator model

ĤAnderson = ĤNN +

L∑
x=1

νxN̂x (A7)
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FIG. 4. Dependence of the reconstruction fidelity on the num-
ber of measurement times. For L = 10 and T = 15 we consider
the time spacing ∆T := T/K = 2/3, 1, 3/2 (K = 10, 20, 30, re-
spectively). For each ∆ we perform a tomographic recovery without
the presence of statistical noise for varying number of consecutive
points with the respective bullet corresponding to the end of the in-
terval. We see a rapid decay of the reconstruction residue, reflecting
the fact that the bulk features of the correlations can be inferred with
relatively little input. The slight non-monotonicity in the K = 30
curve can be explained that for tomographically incomplete inputs
there is a number of covariance matrices consistent with the input
data and the slightly increased deviation when providing more input
can be an unlucky nudge in the wrong direction in this set of co-
variance matrices which are equivalent on the level of Nx(t). Such
behaviour becomes even less pronounced for sufficiently large num-
bers of inputs. The inset shows the full reconstruction residue matrix
with elements |Γ(Rec)

x,y − Γx,y| for K = 30 input times and indicates
that the source of the deviations is the difficulty in constraining the
far-away correlations based on the input dynamics. When appropri-
ate, suppressing such artefacts can be done by making use of prior
knowledge and penalizing additionally correlations between far-way
points.

where νx ∈ [−0.3, 0.3] has been chosen independently and
identically at random for each x. Using such a Hamiltonian,
we construct a thermal ensemble

%̂Anderson(β) = e−βĤAnderson/Zβ , (A8)

where Zβ > 0 again denotes the partition function. We take
the inverse temperature to be β = 3 and denote by Γ(Anderson)

the covariance matrix of %̂Anderson(β).
Fig. 5 shows a reconstruction for one realization of such a

random initial condition. This is an instructive initial con-
dition because we see that the reconstruction correctly de-
tects the regions where the particles are delocalized within
the small regions allowed by the typical Anderson localiza-
tion length. In those restricted regions, the particles roam
freely as evidenced by the off-diagonal correlations in the ini-
tial state but also in the reconstructed state, despite the random
noise coming from taking into account a finite number of state
preparations.

This demonstrates that our tomographic reconstruction
method can detect the coherences in random ensembles where
there is essentially no prior information to the character of
the correlations. To the best of our knowledge, there is no
other method delivering these important observables as very
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many methods make simplifying assumptions such as transla-
tion invariance or thermal equilibrium of a known model. It
is beyond the scope of this work to illustrate the versatility
of the method in all of its ramifications, but it is worth point-
ing out that one can equally well perform such reconstruction
for the second moments of interacting states and thus study
many-body localization. In this context, the covariance ma-
trix has been shown to reveal insights about this genuinely
non-Gaussian phenomenon [75].
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a) Input data, NShots = 1000 per time
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FIG. 5. Reconstruction of a disordered initial condition. After
sampling the on-site disorder νx we have computed the thermal co-
variance matrix of the Anderson model with β = 3. The recon-
structed covariance matrix (panel c) closely matches the true covari-
ance matrix (panel b) with the coherences being accurately repro-
duced with a clear signal to noise ratio.

4. The role of compressibility when reconstructing based on
gradients of the chemical potential

In this section, we comment on a curious feature of the par-
ticle number dynamics that can be seen in the figure shown in
the main text. This is the feature that the bulk of the system is
not influenced by the quench adding a gradient of the chemical
potential, but rather only the edges are affected by this. One
could think that the lack of visible atom number dynamics
would hint at an absence of currents. Indeed, if we consider
any internal quench in a non-interacting and isolated system,
then states entirely lacking currents would feature any visible
dynamics. This can be seen by translating the above statement
into some Greens function t 7→ GQuench(t), the unitary single-
particle Greens function. Homogenous states lacking currents
feature covariance matrices which are multiples of the identity
Γ(NoCurrents) = α1 and for any 0 < λ < 1 we have that there

will be no dynamics

Γ(NoCurrents)(t) = GQuench(t)Γ(NoCurrents)(0)GQuench(t)†

= Γ(NoCurrents)(0)GQuench(t)GQuench(t)†

=: Γ(NoCurrents)(0). (A9)

We are then lead to the following conclusions: Covariance
matrices invariant under all non-interacting quenches in an
isolated system are those reflecting product states (or infinite
temperature states). In particular, these states are incompress-
ible, and gradients of the chemical potential do not modify
their density distribution.

In the main text, we have seen that the bulk of the sys-
tem remains homogenous, but as it turns out, it reveals the
information that the system is homogenous everywhere and
has currents in the bulk matching the currents present at the
edges. This can be seen in Fig. 6 where we consider a quench
into the nearest-neighbour Hamiltonian together with a chem-
ical potential gradient (exactly as in the main text), but now
for a fiducial state that can be thought of as a composition
of a chain in the superfluid state, then a very hot chunk in
the infinite temperature state and then again a superfluid. As
shown in the figure, the system responds with markedly dif-
ferent atom number dynamics than a homogeneous state. We
conclude from this that the atom number dynamics influenced
by the gradients of the chemical potential is sensitive to the
presence or absence of initial correlations. The depletions and
increases of the density of the gas over time we can interpret as
“breathing” of the gas related to spatially varying compress-
ibility. By the equation of state compressibility is related to
the temperature.
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FIG. 6. Reconstruction of an inhomogeneous state. We exemplify
the reconstruction of an initial condition which includes a block with
no correlations. a) The presence of this block visibly modifies the
atom number dynamics. b) The initial covariance matrix is faithfully
reconstructed (c) even despite the noise (see inset for the difference).



10

Appendix B: Reconstructions using a quench into a sub-lattice

The full recovery of the covariance matrix Γ is actually pos-
sible by means of suitable choices of the quench involved in
the protocol. In this section, we provide some ideas for a more
sophisticated protocol which involves a step of quenching into
a sub-lattice. To state the protocol, we follow along the lines
presented in the main text. The first step is again preparing
the state of interest:

(a) Prepare a fermionic state %̂. (B1)

We then split the quench into two steps. As the second step,
the task is:

(b’) Double-up the lattice locally f̂x 7→ f̂2x−1 . (B2)

In Fig. 7b), we illustrate this by assuming that the system
has initially been in a thermal state of Eq. (5) with a trans-
lationally invariant covariance matrix and a finite correlation
length. We assume the doubling is fast and the in-between
sites are still unoccupied while the correlations between the
original sites have remained unchanged which gives rise to a
distinct checker-board correlation pattern. The fast doubling
is in many experimental situations actually a highly plausible
assumption and perfectly feasible.

Next, we shall use coherent evolution under Eq. (5) to mix
information about the coherent current into the particle num-
ber occupation operators:

(b”) Quench to a free Hamiltonian ĤNN. (B3)

In Fig. 7a), we depict the resulting atom number dynamics. In
the last step, again the local atom numbers should be measured

(c) Measure Nx(t) := 〈N̂x〉%̂(t) . (B4)

As shown in Fig. 7c), an accurate reconstruction can be
achieved from this protocol even in the presence of finitely
many state preparations.

1. Ramping up instead of quenching into doubled lattice

The protocol involving the step (b’) where the lattice is dou-
bled is more complex, in that it involves an additional step.
This step is what we assess in this section with respect to its
feasibility. From the perspective of current experimental im-
plementations, performing this step seems rather straightfor-
ward: The periodicity of the lattice is controlled by the trap-
ping lasers which create the optical lattice and can be tuned
rather fast. In what follows, we model the systematic imper-
fection stemming from such a doubling ramp as follows. For
this purpose, we introduce a new fermionic mode in-between
each consecutive pair of modes in the initial lattice. We ini-
tialize that mode in a vacuum state. This, in particular, implies
that there is no correlations to any other site and so for sim-
ulating a finite duration of the doubling the initial covariance
matrix will be

Γ(b′) = Γ(Ini) ⊗
(

0 0
0 1

)
. (B5)

FIG. 7. Tomographic reconstruction. a) Input data for the recon-
struction based on out-of-equilibrium data of local particle numbers
Nx(ti) estimated from NShots = 103 shots per measurement time ti
with in total K = 10 equidistant times after the quench to nearest-
neighbour hopping in the superlattice. b) The input data have been
obtained by evolving a thermal covariance with inverse temperature
β = 3. We have chosen a temperature so that there are relatively
large currents to be recovered. The covariance matrix Γ is shown
after step (b’) after the sub-lattice has been created. Note that be-
sides the new checker-board pattern, the correlations between sites
are assumed to be exactly preserved. c) Results of the reconstruc-
tion Γ(Rec) and the extent of the deviations shown in the inset is
max |Γx,y − Γ

(Rec)
x,y | ≈ 0.05.

Here, we involve a method using the Kronecker product to
concisely write the effect of the doubling in (b’) and Γ(b′)

if the doubling was perfect this would be the perfect state
preparation. We then model the gradual appearance of the
in-between sites over time t by performing an interpolation of
the Hamiltonians

ĤDoubling(t) = (1− t/TDoubling)ĤNNN + t/TDoubling)ĤNN.
(B6)

Here, TDoubling > 0 parametrizes the duration of the dou-
bling and ĤNNN is the next-next-nearest neighbour hopping
Hamiltonian which arises from the fact that the next-nearest
neighbour sub-lattices were initially the system of interest and
the auxiliary unoccupied sites. We then perform an evolu-
tion to time of Γ(b′) under the time-dependent Hamiltonian
ĤDoubling(t) using a standard Trotterization scheme and ob-
tain the covariance matrix Γ(b′)(TDoubling) which encodes the
imperfections stemming from the finite duration of the dou-
bling. This systematic deformation Γ(b′) 7→ Γ(b′)(TDoubling)
would not be detected by the tomographic reconstruction as it
would assume an instantaneous quench (though if the ramp is
known it can be included in the parametrization of the recon-
struction).

In Fig. 8, we display the results of an analysis of the fidelity
of the state preparation involved in step (b’) by performing an
additional numerical analysis. Qualitatively, one observes that
the checker-board pattern melts rapidly whenever TDoubling ≈
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1 is of the order of the tunnelling time. The dynamics occurs
again locally, so most of the dynamics is concentrated around
the diagonal. We do not go into the details of this evolution but
rather show global figures of merit: We consider the matrix of
the absolute values of differences between the entries of the
ramped and ideal covariance matrices |Γ(b′)−Γ(b′)(TDoubling)|
and convert them into a scalar by taking a maximum, mean or
a median over all entries. We find that if the doubling occurs
at a small fraction of the tunnelling time TDoubling � 1, then
the ramp will not make a difference and will not substantially
impact the state that will be reconstructed.

This modelling does not account for other possible imper-
fections involved in the doubling of the lattice. In particular, it
seems that ensuring that the atoms remain in the lowest band
of the lattice at each time of the state preparation (b’) is the
most immediate concern. Not accounting for this (or possi-
bly not mitigating for it by optimal control) would possibly
result in an instance of a “heating” in the experiment, at least
unless precise band mapping would uncover the band excita-
tions. Having said that, given that the atoms at each lattice
site do not have a large extension within the local well the
fraction of band excitations should be small. Qualitatively, it
should be related to the spatial “squeezing” of the local atom
wave-function which is needed to restrain the particles into
wells of a reduced size. Further analysis is beyond the scope
of this appendix, but in principle one could once more ex-
tend our modelling to couple the system of primary interest
to auxiliary unoccupied “sites” of the higher excitation bands.
The coupling constants for this would however depend on the
optimality of the time-dependent ramp involved which would
depend on whether there is a global harmonic trap present or it
has been flattened in the region of interest by additional light
fields using a digital-mirror device.

0 1 2
Ramp duration in tunneling times

0.0

0.1

0.2

0.3

∆
Γ

(T
R

am
p
)

Max

Mean

Median

FIG. 8. Effect of the final ramp for the doubled lattice on ini-
tial correlations. If one assumes a finite time TRamp for the duration
of the transition between the initial and the doubled-up lattice then
the initial correlations will be deformed. The extent of deviations is
∆Γ = max |Γx,y − Γ

(Rec)
x,y | and is seen to be negligible for small

TRamp � 1 (much less than a tunnelling time) and TRamp not negligi-
ble compared to the tunnelling time.

Appendix C: Choosing an appropriate quench Hamiltonian

In this section, we come back to some relevant observations
regarding the choice of the quench Hamiltonian hQuench. This
material is intended to provide further insights into how one
can see that a quench does not provide enough atom num-
ber dynamics to facilitate a reconstruction for researchers in-
terested in implementing the reconstruction based on the re-
sponse of the gas to other protocols than the tilting or dou-
bling of the lattice as presented above. Our first example is
motivated by notions of time of flight measurements: What
happens, after all, if we just simply let the gas expand? Fig. 9
shows that such an approach is not sufficient because in the
optical lattice the gas expands ballistically outwards and the
particles moving at the front do not mix with the ones propa-
gating behind them. We see that according with this intuition
the reconstruction fails to detect currents for the thermal initial
condition shown in the main text. That said, if this approach
does not quite work do to a lack of mixing, then how about
mixing with an auxiliary system? After all, we are interested
in coherent tunnelling events which could in some formalisms
be related to non-zero derivatives of an appropriately defined
“phase” and hence interference could possibly be used to un-
cover the currents. Fig. 10 shows that choosing an incoherent
charge-density wave as the auxiliary system does not actu-
ally lead to a correct reconstruction. A possible explanation
is that the tunnelling currents should be seen as “coherences”
and the mixing to the incoherent system is insensitive to these
correlations. Finally, as we show in Fig. 11, an expansion
constrained by a hard-wall implemented by a sudden increase
of the chemical potential allows for reconstructions of the co-
herent tunnelling currents. We have chosen a quench Hamil-
tonian where the gas can expand through three sites to its left
and right via nearest-neighbour hopping but then suddenly the
hopping is obstructed by a sudden jump in the chemical po-
tential

µx =


100, x < −3

0, −3 ≤ x ≤ L+ 3

100, x > L+ 3.

(C1)

Summarizing, caution is necessary when choosing the precise
form of the quench Hamiltonian. In particular, quenches in-
ducing “coherent” mixing within the system turn out to be
necessary to uncover the “coherences”, i.e., the tunnelling cur-
rents. This intuition seems to be well grounded in the exam-
ples provided above. Having said that, we would like to point
out that a full characterization of the tomographic resource-
fulness of a given quench protocol occurs to be an interesting
open problem which seems to be challenged by the wealth
of possible quench ideas that one can consider as exemplified
above.

1. Symmetries of the Hamiltonian

Various symmetries of the Hamiltonian may lead to some
aspects of the state to remain hidden in the tomographic re-
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FIG. 9. Ballistic expansion. Allowing the gas to suddenly expand
is not an appropriate choice for hQuench because the atoms just move
outwards quickly and do not mix together in the process (panel a)).
As in the main text, we use the thermal initial condition of the nearest
neighbour hopping Hamiltonian (panel b) as the initial condition and
the reconstruction does not uncover the currents in the state. This
indicates that in the ballistic expansion the atom occupation numbers
are not influenced by the presence or absence of tunnelling currents.

covery procedure, or more precisely some correlation func-
tions may be unconstrained by the observed particle number
dynamics. Such symmetries are discussed here. Some simple
examples are the following.

(i) Hopping Hamiltonians mix correlations within the tun-
nelling correlation sector only. Therefore pairing correlations
such as 〈f̂xf̂y〉+h.c. can be arbitrary and their presence or ab-
sence does not modify the input to the tomographic recovery
procedure.

(ii) If both the initial state and the quench Hamiltonian are
translation invariant then even if there are non-trivial currents
in the covariance matrix, the particle number dynamics re-
mains unchanged. This can be seen by observing that both
h and Γ(0) can be simultaneously diagonalized by a Fourier
transform and so their commutator vanishes at all times. This
implies that Nx(t) = Γx,x(t) = Γx,x(0) = Nx(0) and the
currents are unconstrained. We resolved this issue by dou-
bling up the lattice which implies that every other site is un-
occupied and necessarily the state is not translation invariant.

The case when the couplings h are real is related to the
absence of magnetic fields. We will now show that if one
quenches to a Hamiltonian with such couplings, then only the
real part of the currents can be reconstructed. That is to say,
let the state have some second moments Γ = Γ(Re) + iΓ(Im)

with Γ(Re),Γ(Im) being the real and imaginary parts, respec-
tively. Then the tomography performed using the measure-
ment of particle numbers will not constrain the imaginary part
covariance matrix.
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FIG. 10. Mixing with a charge-density wave. We consider the pos-
sibility of measuring the currents by interfering a system with atoms
that were held at fixed positions at its sides. As before, we make
use of a thermal initial condition of the nearest neighbour hopping
Hamiltonian (panel b) as the initial condition. Once more, for this
candidate choice of tomographic quench the reconstruction does not
uncover the currents in the state. This indicates that in the mixing
with charge-density waves on the sides is incoherent in the sense that
the atom number dynamics is insensitive to the “coherence”, i.e., the
tunnelling currents.

Let us now demonstrate that the particle number dynamics
does not depend on the initial imaginary part of the currents
if the couplings h are real. To see this, we note that Γ(Im) =

−Γ(Im)T because Γ = Γ†. Secondly, we will use that h = hT

implies G(t)∗ = G(−t) and G(t)T = G(t). The particle
numbers at time t are given by

Nx(t) = Γxx(t) = G(t)Γ(Re)G(t)† + iG(t)Γ(Im)G(t)†.
(C2)

The first term related to the real part of the currents will in
general influence the particle number dynamics. For the sec-
ond term by transposing twice we see that

Γ(Im)(t) : = G(t)Γ(Im)G(t)† (C3)

=
(
G(t)∗(Γ(Im))TG(t)T

)T
= −

(
G(−t)Γ(Im)G(−t)†

)T
= −Γ(Im)(−t)T

and

Γ(Im)(t)∗ = G(t)∗(Γ(Im))∗(G(t)†)∗ (C4)

= G(−t)Γ(Im)G(−t)†

= Γ(Im)(−t) .
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FIG. 11. Expansion into a hard-wall trap. We consider once again
a ballistic expansion, but now constrained by hard walls on both sides
of the system. As in the previous examples we use the thermal initial
condition of the nearest neighbour hopping Hamiltonian (panel b)
as the initial condition. In this case, we find that the reconstruction
has successfully uncovered the currents in the state implying that in
the mixing induced by the reflections from the walls is sensitive to
the currents. This protocol can be viewed as an abstraction of the
quench shown in the main text involving the tilting of the lattice: In
both cases the atoms are moving on top of each other with reflections
occurring during the dynamics.

The only way for the imaginary part of currents Γ(Im) to con-
tribute to particle number dynamics is via the diagonal matrix
elements of its real part after the time evolution

Re[Γ(Im)(t)] =
1

2
(Γ(Im)(t) + Γ(Im)(t)∗) (C5)

=
1

2
(Γ(Im)(t)− Γ(Im)(t)T ) .

The last relation proves that the real part of Γ(Im)(t) is an
antisymmetric matrix. This implies that its diagonal matrix
elements are vanishing and hence the imaginary part of the
currents cannot be detected by the tomography after a quench
to an evolution with real couplings so

〈N̂x(ti)〉%̂Γ = 〈N̂x(ti)〉%̂Re[Γ]
. (C6)

The next section discusses this property further in relation to
practical examples.

Appendix D: Strategies for experimentally benchmarking the
systematics of the sub-lattice quench on charge density waves

In Ref. [6], it has been shown how to prepare experimen-
tally a charge density wave (CDW) which is just a Fock state
vector with alternating particle occupation numbers |φ 〉 =
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FIG. 12. Reconstruction for quenched CDW. a) The particle num-
ber dynamics used in the quench. b) The same covariance matrix as
above is to be reconstructed. c) The reconstruction has not detected
the presence of a complex-valued current. The upper inset shows that
certain tunnelling correlation are missing, these precisely the imag-
inary part of the currents as shown in the bottom inset showing that
the real part of the correlations has been correctly recovered.

|0, 1, 0, 1 . . . 〉 prepared on L sites and quench to free evo-
lution. The covariance matrix of this state is then Γ(φ) =
diag(0, 1, 0, 1 . . .). In what follows, we will discuss that this
state can be used to build trust in the reconstruction method.

First of all, we can make sure that the finite duration of the
super-lattice creation when preparing the CDW does not in-
duce correlations between sites, i.e., just using measurements
using the atom microscope we can make sure that the covari-
ance matrix is Γ(φ) = diag(0, 1, 0, 1 . . .). This can be argued
by a fidelity witnessing argument [76, 77]. If we have L sites
and Nx does not deviate from 0 or 1 by more than ε, then the
fidelity of the unknown state in the laboratory %̂p with respect
to the CDW Fock state vector |φ 〉 is lower bounded by

F (%̂p) = 〈φ | %̂p |φ 〉 ≥ 1− ε = 1− εL , (D1)

where L as before is the number of lattice sites. Having said
that, to benchmark our method it is not necessary to evaluate
the fidelity to the full density matrix of |φ 〉 but it will suffice
to bound the deviation in the experiment from the covariance
matrix from Γ(φ) using the Cauchy-Schwarz inequality

|Γx,y| ≤
√
NxNy, (D2)

which readily implies that |Γx,y| ≤
√
ε whenever Nx ≤ ε.

If at a given site x the particle number is measured to be
Nx = 1 − ε then after a Bogoliubov transformation swap-
ping particles and holes we again obtain |Γx,y| ≤

√
ε. We

conclude that if the CDW preparation is extremely good and
the atom microscope measurement, too, then just from this
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data one can conclude that there are no currents in the sys-
tem with the strength of a quantum certification test [26, 78].
Such a certified Fock state with a precise bound on fidelity can
be used as a starting point for benchmarking of the dynamics
with or without interactions.

Note that the step of creating a state with no currents can
be verified by the static information about particle numbers
alone using the atom microscope. Once we know that there
is no currents in the initial state, then we can create them by
known dynamics. If this is done and the dynamics can be
simulated numerically then one obtains an experimental state
with well-grounded prior knowledge what currents to expect
to be present in the system and one can verify the functioning
of the tomographic reconstruction. The next section shows an
example where we present results for reconstructions of time-
evolved CDW states.

Check #1: Reconstructing a known current assuming ĤNN

Assuming the Hamiltonian is ĤNN we can consider some
fixed time t0 and attempt to reconstruct the state vector

|ψ 〉 = e−it0ĤNN |φ 〉 (D3)

which has the covariance matrix Γ(ψ) = G(t0)Γ(φ)G(t0)†. If
we assume the free nearest-neighbour hopping evolution to be
exact, then we can be sure that the covariance matrix in the
laboratory is ε-close to Γ(ψ) if we verified that the experimen-
tal preparation of the CDW has been ε-close to Γ(φ). But then
knowing that, we know precisely which off-diagonal currents
should be reconstructed.

The check reads: One prepares a CDW and performs
quenches to times t = t0, t0 +∆t, . . . , t0 +T equi-distributed
in steps ∆t. From the measured data, one recovers the covari-
ance matrix assuming that the data have been taken at times
t = 0,∆t, . . . , T . The tomography should return a covariance
matrix close to Γ(ψ). Note that when running the tomography
here we are bypassing the step (b) from the main text. We
can learn from the atom microscope measurements in step (d)
whether the initial state has indeed been prepared with high fi-
delity. And it is not necessary to double up the lattice anymore
as the initial state is not translation invariant by construction.
Having said that, the super-lattice creation is going to be im-
portant when studying homogeneous thermal states that will
be of interest in future quantum simulation experiments and
hence it is important to map out the systematic influence of
this step on the tomography which we describe next.

Check #2: Assessing the systematic influence of doubling up the
lattice

The above check tests the reconstruction of a state with
known currents but with the input influenced by statistical er-
rors. In the check the steps (b-d) have been on purpose by-
passed as much as possible. The lattice doubling has been
employed only in the sense of the state preparation in step (a).

It is possible to check how step (b) influences the recon-
struction in the experiment. Again the task is to prepare the
CDW with covariance matrix Γ(φ) and evolve it under the
nearest-neighbour hopping Hamiltonian of L sites to time
t0 obtaining the covariance matrix Γ(ψ). Then the super-
lattice from step (b) should be created resulting in the checker-
board covariance matrix Γ(ψ,b). In step (c) the system should
be evolved under the nearest-neighbour hopping Hamiltonian
(now on the doubled lattice) to times t = 0,∆t, . . . , T . As
always in the last step (d) local particle numbers at each of the
times are to be estimated to obtain the input to the reconstruc-
tion.

The results for the tomographic recovery in this scenario
with t0 = 1 are shown in Fig. 12. The input is depicted in
Fig. 12a) after being subjected to noise modelling statistical
errors. Note that the system considered here is far from being
in thermal equilibrium and the particle numbers are chang-
ing over time-scales that are longer than those considered in
the scenario discussed in the main text where the system was
closer to thermal equilibrium. The checker-board covariance
matrix Γ(ψ,b) is shown in Fig. 12b). In Fig. 12c) we show the
results of the reconstruction. Importantly, the reconstruction
does not recover the true covariance matrix as shown in the up-
per inset of Fig. 12c). As explained above, this is because this
reflects a non-equilibrium situation with a non-trivial imagi-
nary part of currents Im[Γ(ψ,b)] 6= 0. On the other hand, as
shown in the lower inset of Fig. 12c) the output of the recon-
struction closely matches the real part of currents Re[Γ(ψ,b)].
In fact, these are reliably recovered as they influence non-
trivially the dynamics of the particle number and the devia-
tions stem from the random noise realization that has been
added to the input and is shown in Fig. 12a).

Check #3: Benchmarking the reconstructions in the presence of
artificial magnetic fields

In this last section, we show how to check the method ex-
perimentally if one wishes to reconstruct also the imaginary
part of the currents. For this, it is necessary to have complex
tunnelling amplitudes present during the tomographic quench
in step (c). There does not seem to be a canonical choice
which model to choose as this depends on the way the optical
lattice is modulated in order to obtain the artificial magnetic
field. We hence show a minimal example where the initial sys-
tem is a two-site optical lattice with a single particle. Again
we perform an evolution with t0 = 1 which leads to a sin-
gle tunnelling current Γ1,2 6= 0 which turns out to be purely
complex in this case. We then double up the lattice obtaining
4 sites and as above the particle numbers are to be measured
after evolutions in the superlattice at equidistant times.

Fig. 13 shows that again simple hopping evolution does
not uncover anything about the complex current. In contrast
Fig. 14 shows that adding a simple complex hopping ampli-
tude to the quench Hamiltonian in step (c) leads to a full re-
construction of the current. In both examples we did not add
noise on the particle numbers so that the difference in the dy-
namics can be more easily compared between the evolution
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with and without the magnetic fields.
Summarizing this check, we point out that if it was pos-

sible to reconstruct using some Hamiltonian which has real
couplings Ĥ(c),real and additionally using a Hamiltonian that
adds imaginary couplings without modifying the previous
ones Ĥ(c),gen = Ĥ(c),real + Ĥ(c),imag then one can do two se-
ries of data taking and the tomography using Ĥ(c),gen should
give a similar real part of the covariance matrix to that ob-
tained using Ĥ(c),real.

FIG. 13. Tomographic recovery of the two site system to a super-
lattice on four sites. a) The particle number dynamics used as input
as shown above does not depend on the complex part of the covari-
ance matrix because we use the nearest-neighbour hopping Hamilto-
nian ĤNN with real couplings. b) The absolute value of the covari-
ance matrix. The off-diagonal current is purely imaginary. c) As dis-
cussed the imaginary part of the covariance matrix is unconstrained
and hence the reconstruction is missing the off-diagonal current. The
evolution of the reconstructed covariance matrix yields particle num-
bers exactly matching the input as proven analytically.

FIG. 14. Recovery in the presence of artificial magnetic fields.
a) The particle number dynamics is influenced by the complex part
of the covariance matrix if we use a Hamiltonian Ĥ = ĤNN +
i
∑3
x=1 f̂

†
x f̂x+1 + h.c with complex couplings. b) The same covari-

ance matrix as above is to be reconstructed. c) The reconstruction
now has detected the presence of the complex-valued current.

Appendix E: Systematic influence of ramps when quenching
many-body interactions

In practice, the switching off of the interactions by means of
Feshbach resonances will not be instantaneous. Narrow Fes-
hbach result in relatively fast quenches, and there are no fun-
damental limits to a fast switching. That said, any switching
that is not instantaneous will have some effect. In this section,
we discuss the impact of finite ramps, reflecting the process of
switching off interactions. Specifically, to provide insight into
the resulting effects, we consider the case of fermions with
spin and will compute the covariance matrix of thermal states

of the Hubbard chain using exact diagonalization. We denote
the annihilation operator at x of a spin up fermion by f̂x,↑
and for spin down by f̂x,↓. In this notation the Hamiltonian
of a Hubbard chain on L sites with open boundary conditions
reads

ĤHubbard = −
∑
σ=↑,↓

L−1∑
x=1

f̂†x,σ f̂x+1,σ + h.c. + U

L∑
x=1

N̂x,↑N̂x,↓

(E1)

where N̂x,σ := f̂†x,σ f̂x,σ for σ =↑, ↓. To ease the notation, we
define

â2x−1 := f̂x,↑, â2x := f̂x,↓ (E2)

which allows us to concisely write down the Jordan-Wigner
transformation

âx = Z⊗x−1 ⊗ S− ⊗ 1⊗2L−x
2 (E3)

with

Z =

(
1 0
0 −1

)
(E4)

referring to the Pauli-z matrix and

S− = (S+)† :=

(
0 1
0 0

)
. (E5)

Using the ordering we have chosen, we find

ĤHubbard = −
2L−2∑
x=1

â†xâx+2 + h.c. + U

L∑
x=1

N̂2x−1N̂2x (E6)

which under the Jordan-Wigner transformation turns into

ĤHubbard =

2L−2∑
x=1

S+
x Zx+1S

−
x+2 + h.c. + U

L∑
x=1

Z2x−1Z2x

(E7)

where we have used the concise notation

Ξx := 1⊗x−1
2 ⊗ Ξ⊗ 1⊗2L−x

2 (E8)

with Ξ := Z, S+ or S−. Using exact diagonalization, we
compute the thermal density matrix

%̂β(U) = e−βĤHubbard/Zβ (E9)

with Zβ := tr[e−βĤHubbard ]. Using the Jordan-Wigner transfor-
mation we then can compute the respective covariance matrix
with entries for x < y

Γ(Hubbard)
x,y = tr[â†xây%̂β(U)] (E10)

= − tr[S+
x Zx+1 . . . Zy−1S

−
y %̂β(U)].

Again using exact diagonalization, we have computed the
thermal state for β = 3 and additionally the covariance ma-
trix. The results for the superfluid phase with U = 1 are
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shown in Fig. 15 together with a comparison the covariance
matrix for just the nearest-neighbour hopping with U = 0.
We find that the difference is very small which means that the
Gaussian model is representative for the second moments also
of the interacting thermal state if we neglect a small deviation.
For this reason the effect of ramping down the interaction in
finite time should be less severe because the state will not be
strongly affected by it.

For the case of the Mott phase with U = 10 we find, see
Fig. 16, a very substantial difference of the second moments
when compared to those obtained from a Gaussian model.
To perform a meaningful comparison we consider a heuristic
mean-field ansatz for a non-interacting Hamiltonian to yield
a Gaussian state to compare to the second moments arising
from the interacting Hamiltonian. We chose

ĤMF,↓(N
(↑)) = −

L∑
x=1

f̂†x+1,↓f̂x,↓ + U/8

L∑
x=1

N (↑)
x N̂x,↓

(E11)

where the spin-up density UN (↑)/8 plays the role of a vec-
tor of the effective chemical potential for the spin-down band.
Qualitatively, the correlations are restricted to nearest neigh-
bour sites while in the non-interacting case they span a larger
region. Here a finite duration of ramping down the interaction
can sizeably affect the correlations.

The simplest protocol for tomographically reconstructing
the second moments Γ(U) of an interacting state using our
method is to ramp down the interaction in time TRamp and at
the end of the ramp tilt the optical lattice as explained above.
The ramp will have affected the covariance matrix leading to
some new second moments Γ(U→0) and the tomography will
recover these rather than Γ(U). The result will hence be ac-
curate if Γ(U→0) ≈ Γ(U). In Fig. 17, we show the effect on
the second moments of ramping down the interaction start-
ing from U = 10 to U = 0. We depict covariance matrices
at the end of ramps of varying length TRamp = 0.5, 1 and 2,
so smaller than the tunnelling time, equal, and larger than it.
We find that the ramp time does influence the correlations to
certain degree but importantly the overall pattern is not over-
hauled. The changes in the values of the currents increase
monotonically with the increase of the duration of the ramp.
Due to the limitations of system sizes available in exact diag-
onalization, we have provided results for only small systems
while in the thermodynamical limit one should expect defects
appearing due to the Kibble-Zurek mechanism. It seems that
it can be avoided, however, by separating a large system into
smaller portions such that energy gaps never become smaller
than a certain threshold and perform the tomography for each
individually. The smaller systems should be larger than the
correlation length and such subdivision may be advisable also
when dealing with a finite number of total state preparations.

Ramps of this order of duration can be thought of as being
implemented by a narrow Feshbach resonance allowing for a
relatively fast switching time. With the same approach one
could study the case of ramps larger durations but it seems
that ramps an order of magnitude longer than the tunnelling
time are ill-advised for the sake of correlation read-out using

the response to non-interacting dynamics. The reason for this
is that for short ramps, as mentioned in the main text, Lieb-
Robinson bounds allow to narrow down the influence of the
ramp, restricting the action of the its dynamics to the close-
by sites and crucially this statement is state independent so
can be also employed in cases that are not classically tractable
in practice. In contrast, for long ramps, the Lieb-Robinson
bounds would not offer a non-trivial estimate of the effect of
the ramp.

FIG. 15. Second moments in the superfluid phase. panel a) shows
the covariance matrix of the Hubbard model for U = 1, panel b) the
restriction spin-↓ modes. panel c) depicts the covariance matrix of
the nearest-neighbour hopping with the same temperature. The inset
shows the difference to the covariance matrix of interacting state in
absolute values.

FIG. 16. Second moments in the Mott phase. panel a) shows the
covariance matrix of the Hubbard model for U = 10, panel b) the
restriction spin-↓modes. panel c) illustrates the covariance matrix of
the nearest-neighbour hopping with the same temperature. The inset
shows the difference to the covariance matrix of interacting state in
absolute values.

Appendix F: Fermionic mode entanglement

In this section, we provide further insights into the opera-
tional meaning of the entanglement quantified based on our
reconstructions, and what fermionic mode entanglement oper-
ationally means. We denote the fermionic Fock state vectors
by

|µ 〉F := (f̂†1 )µ1 . . . (f̂†L)µL |∅ 〉 (F1)

with µ ∈ {0, 1}×L and where |∅ 〉 denotes the vacuum state
vector defined as satisfying f̂x |∅ 〉 = 0 for all x = 1, . . . , L.
For a given order (so basically a symmetric group element
S ∈ SL that captures the order of the fermionic modes when
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FIG. 17. Influence of ramping interactions down in a finite time.
We find that the deviation of correlations after the ramp Γ(U→0) from
the actual second moments Γ(U) increase monotonically together
with the ramp duration TRamp but are small enough such that the cor-
relation patterns are not qualitatively distorted. Hence, we conclude
that the tomographic read out would clearly show the effect of the
presence of interaction on the second moments and could explore
the single-body reduced density matrix for the entire phase diagram
of the Hubbard model.

mapping them to spins), we can define a Jordan-Wigner trans-
formation by the relations

f̂x = Z⊗x−1 ⊗
(

0 1
0 0

)
⊗ 1⊗L−x2 . (F2)

This choice of the Pauli-z matrix fixes its eigenbasis so that
we have the convention Z |ν 〉S = (−1)ν |ν 〉S with ν = 0, 1
and then Eq. (F2) imply directly that

|µ 〉F = ⊗Lx=1 |µx 〉S . (F3)

Note that any ordering of modes can give rise to such a qubit
representation where fermionic operators and state vectors can
be expressed in an explicit matrix form, but once chosen it
should remain fixed throughout calculations. Importantly, oc-
cupation states of modes after a non-trivial Bogoliubov trans-
formation will not anymore have such a tensor-product form
and one should consider the decomposition into antisymmet-
ric subspaces.

Having fixed the reference ordering of modes, we have a
natural notion of fermionic subsystems: A subsystem A con-
sists of a collection of modes, i.e., positions in the lattice,
while B is constituted by the complementing modes. In all
what follows, we are perfectly free to take the ordering so
that modes labeled 1, . . . , |A| give rise to subsystem A, while
|A|+ 1, . . . , L give rise to B.

We now turn to quantum states in such a fermionic setting.
Given a quantum state %̂ supported on the Hilbert space of the
entire system, the reduced state %̂A is defined via functionals
of observable algebras: Specifically, it will reflect correlation
functions involving operators acting in A equal to those of the
global state. That is to say, in what follows, we can treat the
system as a system of |A| qubits held by A and L−|A| qubits
held by B.

Any allowed quantum operation performed within an iso-
lated fermionic system must respect the parity of fermion
number super-selection rule [66, 67], which implies that at
any time, any correlation function involving an odd number
of fermionic creation and annihilation operators must vanish.

This means that if one performs operations and measurements
locally in subsystems A and B, then to describe any of such
processes it suffices to consider the reduced states %̂A and %̂B
to be a direct sum of sectors reflecting even and odd particle
numbers in A and B, respectively. That is to say, we can first
make use of a projection π ⊗ π which projects each of the
local subsystems A and B into a direct sum of even and odd
particle numbers.

Local operations with classical communication reflecting
super-selection rules, referred to as LOCC+SSR, can hence
be identified with local operations in the qubit systems re-
flecting A and B under the Jordan-Wigner transformations,
respecting the local direct sum structure of even and odd par-
ticle numbers in A and B and the total system. This is a per-
fectly operational prescription. We call a quantum state mode
entangled throughout this article, if it is not a convex combi-
nation of uncorrelated quantum states in fermionic modes.

1. Single copy fermionic mode entanglement

There is a subtlety arising in the fermionic context, how-
ever: This has to do with the presence of super-selection rules.
This can be seen as follows. Turning to quantitative prescrip-
tions, one can define single-copy entanglement [79, 80] as the
maximum probability at which one can – at least in principle
– extract maximally entangled states of distinguishable quan-
tum systems out of the original system of fermionic modes,
making use of any operation in LOCC+SSR that is allowed
by quantum mechanics. In this prescription, one may make
use of suitable physical interactions or measurements respect-
ing LOCC+SSR. The target distinguishable quantum systems
can either be seen as being actually available in the labora-
tory, e.g., as spin degrees of freedom, or as a conceptual tool
to precisely think of mode entanglement in the first place.

Interestingly, in this sense, a state %̂ = |ψ 〉 〈ψ | with |ψ 〉 =

(|0, 1〉F + |1, 0〉F)/
√

2 represented as

|Φ 〉 :=
1√
2

( |0 〉S ⊗ |1 〉S + |1 〉S ⊗ |0 〉S) (F4)

is not single-copy entangled, as no physically allowed proto-
col can map this state onto an entangled state of distinguish-
able quantum systems with any non-zero probability. The pro-
jection π acting as

|Φ〉〈Φ| 7→ (π ⊗ π)|Φ〉〈Φ|(π ⊗ π) (F5)

will render the state operationally indistinguishable from a
quantum state that is merely classically correlated and con-
tains no quantum entanglement. That is to say, for all prac-
tical purposes, the state does not contain any entanglement
that can be operationally extracted (i.e., with all operations
allowed) from a single specimen or copy. It is important to
stress that this statement is referring to single-copy entangle-
ment only: It is perfectly an entangled state if asymptotic state
transformations are being allowed for, as explained below.
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2. Distillable fermionic mode entanglement and asymptotic
state manipulation

However, the above fermionic two-mode quantum state
represented by the state vector |ψ 〉 = (|0, 1〉F + |1, 0〉F)/

√
2

is in fact many-copy entangled, as the SSR is asymptotically
not detrimental to the entanglement content of the state vector.
Such asymptotic notions involving many copies of identically
prepared systems at the same time are the most commonly ap-
plied standard notions of entanglement theory, much inspired
by notions of classical information theory. Here, one still re-
stricts to quantum operations local to A and B, coordinated
by classical means by communicating measurement outcomes
between A and B. But one assumes to have available sev-
eral copies (or specimens) of the quantum many-body systems
available and is allowed to coherently manipulate the quan-
tum state over the copies. Obviously, in practical settings, it is
implausible to achieve completely general operations of this
kind: It is still a highly convenient abstraction.

The notion of the distillable entanglement [60, 61] cap-
tures most naturally the resource character of entanglement
in quantum information theory. It is in a way the “entangle-
ment content” of a state. It is defined as the optimal rate at
which one could extract maximally entangled pairs of distin-
guishable systems in such a hypothetical optimal state ma-
nipulation from many identical copies. This notion not only
allows to detect the presence of fermionic entanglement: It
also allows to make quantitative estimates, which is precisely
what we are interested in here. More precisely and specifically
put, the distillable entanglement quantifies the asymptotic rate
at which one can extract (“distill”) distinguishable approxi-
mately perfect maximally entangled qubit pairs (“Bell pairs”)
as in Eq. (F4) of distinguishable quantum systems from many
identical copies of an input state composed of fermionic
modes, using quantum operations from LOCC+SRR [81]. For
a fermionic initial quantum state %̂ on L modes partitioned
into A and B, the entanglement distillation problem involves
as initial state the bona fide quantum state of n copies on nL
modes. The final state is asymptotically in n better and better
approximating m copies of a maximally entangled pure quan-
tum state associated with the state vector

|ψFinal 〉 = |Φ 〉⊗m , (F6)

in trace-norm ‖.‖1, so will approximate m Bell pairs. The
larger m is, the larger is the yield of this procedure. The dis-
tillable entanglement under LOCC+SSR is now

ESSR
D (%̂) = lim sup

n→∞

n

m
, (F7)

as the supremum over all LOCC+SSR protocols for n input
copies and m output copies each. Since the super-selection
rule is asymptotically not altering the rate, we have that

ESSR
D (%̂) = ED(%̂), (F8)

where the right hand side is the distillable entanglement
for the spin equivalent of %̂, possibly not respecting super-
selection rules [81]. The right hand side can be bounded from

below by the hashing bound, as stated in the main text. The
entanglement cost EC refers to the optimal rate that can be
achieved in the converse, starting fromm copies of maximally
entangled Bell pairs and achieving approximately perfect n
copies of the anticipated target state. Again,

ESSR
C (%̂) = EC(%̂), (F9)

while in general EC(%̂) ≥ ED(%̂), as the process of distilla-
tion can be lossy compared to the process of formation that
the entanglement cost captures.

3. Evaluation of the witness

We present details on how to evaluate the entanglement wit-
ness EG(Γ) in this section. We shall make use of the fact that
the von Neumann entropy, in general being defined for a quan-
tum state as

S(%̂) = − tr[%̂ log(%̂)], (F10)

is unitarily invariant. For this reason, it can be easily and ef-
ficiently be evaluated for a fermionic Gaussian state. In the
main text we are using the fact that given the covariance ma-
trix Γ = Γ(%̂) of the state %̂, we can associate to the state a
unique Gaussian state %̂(Γ) with the same second moments. In
fact, we have

%̂(Γ) = argmaxσ̂{S(σ̂) s.t. Γ(σ̂) = Γ(%̂)}, (F11)

which means that Gaussian states give rise to the maximum
possible von Neumann entropy, among all quantum states for
fixed second moments Γ [82].

For thermal states of particle number preserving Hamiltoni-
ans and for limits of such finite-temperature states, the entropy
of a Gaussian state can be computed from the covariance ma-
trix using standard expressions, see, e.g., Refs. [83, 84], by
obtaining the vector n of the eigenvalues of Γ. We then have

S(Γ) =S(%̂(Γ)) = −
L∑
k=1

f(nk), (F12)

where the function f : [0, 1]→ [0, 1] is defined as

f(x) =

{
−x log(x)− (1− x) log(1− x) , if x > 0,
0, if x = 0.

(F13)
This formula can be evaluated efficiently in the number of
modes. Finally, let us remark that the second moments of a re-
duced density matrix %̂A describing a subsystemA is obtained
by restricting the second moments to A which yields the cor-
responding covariance matrix ΓA and hence for a Gaussian
state

S(%̂A) = S(ΓA) , (F14)

as an expression in terms of the covariance matrix.
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4. Optimizing the witness value via local Bogoliubov
transformations

Our goal is to maximize the witness at hand to achieve the
tightest possible lower bound bound. In the main text we gave
an example where system A consists of the first 10 modes
A = {1, 2, . . . , 10} and B = {11, . . . , 20}. If we would
apply the witness directly to systems A and B then it will
give non-trivial values only for lowest temperatures where
the thermal state is very close to the ground state. Indeed,
in the case if the global quantum state is pure, then we have
EG(Γ) = S(ΓA) − S(Γ) ≈ S(ΓA) and whenever the ground
state is effectively described by a conformal field theory the
subsystem entropy will scale logarithmically in the size of A.
In the other limit of large temperatures, the entropies of whole
system and subsystem A will both scale according to the vol-
ume and so the witness will have a negative value. To fix this,
one has to make use of the freedom to make local unitary rota-
tions on each subsystem. The goal here is to find some modes
that carry only very little entropy such that the witness has a
chance to be non-negative.

In general finding the optimal local unitaries that maximize
the witness can be complicated but we found that the follow-
ing heuristic is helpful. Denote by ΓA and ΓB the principal
sub-matrices of Γ which are the covariance matrices of sub-
systems A and B and let UA and UB be the corresponding

diagonalization unitaries. Then the Gaussian state %̂′ with the
second moments given by

Γ′ = UΓU† =

(
ΛAQA,B
Q†A,BΛB

)
(F15)

where U = UA ⊕ UB , features an identical amount of en-
tanglement because the entanglement cost is invariant under
local unitary transformations EC(%̂) = EC(%̂′). We hence
can focus on the quantum state %̂′.

We observe that this is a viable distillation heuristic, as now
there can be a mode a ∈ A and a mode b ∈ B such that their
covariance matrix Γ′{a,b} features a larger purity than before.
This is the meaning of the sparse off-diagonal structure seen
in the figure presented in the main text. We can restrict to
these modes because entanglement cost is monotonous under
partial traces

EC(%̂′) ≥ EC(%̂′a,b), (F16)

i.e., discarding some degrees of freedom can only decrease the
available entanglement resources. This discarding however is
crucial because we get a better chance for the witness value to
be non-trivial – for this the discarded modes should take away
most of the entropy while the reduced state of the remaining
modes should be as pure as possible.


