The lungworm Dictyocaulus viviparus is one of the most economically important bovine parasites in temperate climate regions. Following infection, D. viviparus induces a temporary protective immunity, and a vaccine based on attenuated, infective larvae is commercially available. However, due to several disadvantages of the live vaccine, the development of a recombinant subunit vaccine is highly desirable. Therefore, the major sperm protein (MSP), which is essential for the parasite’s reproduction, was tested as a recombinantly Escherichia coli-expressed glutathione-S-transferase (GST)-fused vaccine antigen in immunization trials with two different adjuvants, Quil A and Al(OH)3. Calves (N = 4 per group) were immunized on study day (SD) 0, 21 and 42 and given a challenge infection on SD 63–65. The two control groups received only the respective adjuvant. Based on geometric means (GM), a 53.64% reduction in larvae per female worm was observed in the rMSP Quil A group vs. its control group (arithmetic means (AM): 54.43%), but this difference was not statistically significant. In the rMSP Al(OH)3 group, the mean number of larvae per female worm was even higher than in the respective control group (GM: 9.24%, AM: 14.14%). Furthermore, male and female worm burdens and the absolute number of larvae did not differ significantly, while the Al(OH)3 control group harbored significantly longer worms than the vaccinated group. Vaccinated animals showed a rise in rMSP-specific antibodies, particularly IgG and its subclass IgG1, and the native protein was detected by immunoblots. Although rMSP alone did not lead to significantly reduced worm fecundity, it might still prove useful as part of a multi-component vaccine.