dc.contributor.author
Hittmeir, Sabine
dc.contributor.author
Klein, Rupert
dc.contributor.author
Müller, Annette
dc.contributor.author
Névir, Peter
dc.date.accessioned
2022-01-05T14:06:51Z
dc.date.available
2022-01-05T14:06:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33341
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33062
dc.description.abstract
The dynamic state index (DSI) is a scalar field that combines variational information on the total energy and vorticity of a flow field with the second law of thermodynamics. Its magnitude is a combined local measure for non-stationarity, diabaticity, and dissipation in the flow, and it has been shown to provide good qualitative indications for the onset and presence of precipitation and the organization of storms. The index has been derived thus far for ideal fluid models only, however, so that one may expect more detailed insights from a revised definition of the quantity that includes more complex aerothermodynamics. The present paper suggests definitions of DSI-like indicators for flows of moist air with phase changes and precipitation. In this way, the DSI is generalized to signal deviations from a variety of different types of balanced states. A comparison of these indices evaluated with respect to one and the same flow field enables the user to test whether the flow internally balances any combination of the physical processes encoded in the generalized DSI-indices.
en
dc.format.extent
18 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
dynamic state index
en
dc.subject
phase changes
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
The dynamic state index with moisture and phase changes
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
123101
dcterms.bibliographicCitation.doi
10.1063/5.0053751
dcterms.bibliographicCitation.journaltitle
Journal of Mathematical Physics
dcterms.bibliographicCitation.number
12
dcterms.bibliographicCitation.volume
62
dcterms.bibliographicCitation.url
https://doi.org/10.1063/5.0053751
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1089-7658
refubium.resourceType.provider
WoS-Alert