The dynamic state index with moisture and phase changes

Cite as: J. Math. Phys. 62, 123101 (2021); doi: 10.1063/5.0053751 Submitted: 10 April 2021 • Accepted: 17 November 2021 • Published Online: 8 December 2021

Sabine Hittmeir,¹ Rupert Klein,^{2,a)} D Annette Müller,² and Peter Névir²

AFFILIATIONS

¹University of Vienna, Vienna, Austria ²Freie Universität Berlin, Berlin, Germany

^{a)}Author to whom correspondence should be addressed: rupert.klein@math.fu-berlin.de

ABSTRACT

The dynamic state index (DSI) is a scalar field that combines variational information on the total energy and vorticity of a flow field with the second law of thermodynamics. Its magnitude is a combined local measure for non-stationarity, diabaticity, and dissipation in the flow, and it has been shown to provide good qualitative indications for the onset and presence of precipitation and the organization of storms. The index has been derived thus far for ideal fluid models only, however, so that one may expect more detailed insights from a revised definition of the quantity that includes more complex aerothermodynamics. The present paper suggests definitions of DSI-like indicators for flows of moist air with phase changes and precipitation. In this way, the DSI is generalized to signal deviations from a variety of different types of balanced states. A comparison of these indices evaluated with respect to one and the same flow field enables the user to test whether the flow internally balances any combination of the physical processes encoded in the generalized DSI-indices.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0053751

I. INTRODUCTION

A. The original DSI: Deviations from stationary, adiabatic, and inviscid states in dry air

The Dynamic State Index (DSI) is a parameter based on first principles of fluid mechanics that indicates local deviations of the atmospheric flow field from a stationary, adiabatic, and inviscid solution of the non-hydrostatic compressible governing equations.¹⁰ In this way, the DSI can be evaluated on a given atmospheric flow field to detect atmospheric developments, such as fronts or hurricanes. Atmospheric processes involve the interaction of energetic, thermodynamic, and vortex-related quantities. The (scalar) dynamic state index combines this information in a particular way.

For dry conservative systems, the DSI is given by the Jacobi-determinant of three constitutive quantities: an advected scalar ψ , an energy variable *B*, here given by the Bernoulli stream function, and the potential vorticity (PV) Π ,

$$DSI = \frac{\partial(\psi, B, \Pi)}{\partial(a, b, c)} = \frac{1}{\rho} \frac{\partial(\psi, B, \Pi)}{\partial(x, y, z)},$$
(1)

where x, y, and z denote the Cartesian coordinates, and dm = da db dc, where a, b, and c are the Lagrangian mass coordinates. Thus, integrating the conservation of mass in the Lagrangian sense with

$$\rho = \frac{\partial(a, b, c)}{\partial(x, y, z)} \tag{2}$$

leads to the right-hand side representation of the DSI in (1) [see Eq. (8.2) in Ref. 10 with $\psi = s$ denoting the specific entropy]. The precise definitions of ψ , *B*, and Π depend on the underlying equations of motion. More complex conservative systems involving moisture DSI-like indicators become sums of Jacobi-determinants, as shown below. In the presence of irreversible processes, such as precipitation, such a compact representation turns out not to be available, however.

The formulation of the DSI in (1) is equivalent to its representation as the mass flux divergence of the "steady wind" $\mathbf{v}_{st} = -(\nabla B \times \nabla \Psi)/\rho \Pi$ (cf. the work of Schär¹³),

$$DSI = -\frac{\Pi^2}{\rho} \nabla \cdot (\rho \mathbf{v}_{st}) = 0.$$
(3)

The field \mathbf{v}_{st} may be interpreted as the local basic state wind that would have to prevail for given fields (ψ , B, Π) for the flow to be stationary. Again, the precise definition of the basic state wind depends on the model equations. In the following, \mathbf{v}_{st} will simply be called steady wind. This principal definition of the DSI via the steady wind will be used below as a basis for the derivations of DSI-like indices for more complex systems involving moisture and precipitation.

The basic state is characterized by DSI = 0, and for dry dynamics, this amounts to vanishing advection tendencies of the three constitutive quantities in determinant (1); see, e.g., the work of Névir and Sommer¹¹ or Müller and Névir.⁸ This property can be traced back to the Lagrangian conservation of the three constitutive quantities under the assumption of stationarity. The originally introduced DSI by Névir¹⁰ is based on the adiabatic non-hydrostatic compressible governing equations for dry air without consideration of thermodynamical sources and sinks, such as solar forcing, in the basic state. In this case, regarding (1), ψ corresponds to the potential temperature, *B* is the Bernoulli function (or total enthalpy) (see Ref. 16, Sec. 1.10), and Π is Ertel's potential vorticity formed with the potential temperature as the advected scalar (see Ref. 16, Sec. 4.5).

This DSI concept can be applied to indicate non-steady, diabatic, and frictional atmospheric processes across all scales: Weber and Névir¹⁷ showed how the characteristic dipole structure of the dynamic state index can be used to diagnose the evolution of highand low-pressure areas on the synoptic scale or hurricanes on the meso-scale. On the convective scale, several authors have shown that the DSI is strongly correlated with intensive precipitation processes; see, e.g., the work of Claussnitzer *et al.*,² Gaßmann,⁵ and Weijenborg *et al.*¹⁸

B. DSI-like indicators for generalized balances and fluids

As stated above, the original dynamic state index generates a non-zero signal when the underlying flow is non-stationary or when it involves diabatic or dissipative processes. In other words, the DSI indicates deviations from a particular kind of balanced state. This perspective gives rise to generalizations of the DSI as indicators for deviations from different types of balance.

One prominent example in question is the geostrophic and hydrostatic balance that forms the basis of quasi-geostrophic theory and is considered approximately valid on synoptic length and time scales. To accomodate such scale-dependent aspects in the DSI framework, Müller *et al.*⁹ derived a dynamic state index, DSI_{QG}, directly from the quasi-geostrophic model. In this case, comparing the DSI_{QG} with (1), the Bernoulli function reduces to the stream function $B = \frac{1}{f_0}\phi$, where ϕ is Earth's gravitational potential, f_0 denotes the Coriolis parameter, and Π is the quasi-geostrophic, rather than Ertel's, potential vorticity. By tracing back the original asymptotic derivation of the quasi-geostrophic model from the full compressible flow equations in Ref. 12, these authors also showed that DSI_{QG} with the original DSI for one and the same flow field of a compressible fluid, one can ascertain whether a balanced flow in the sense of vanishing DSI is also balanced in the quasi-geostrophic regime—in which case DSI_{QG} should be comparably small.

In the same spirit, Müller and Névir⁸ recently introduced a DSI for the Rossby model and confirmed its high correlation to precipitation patterns and its applicability to the phenomenological concept of "Großwetterlagen." For the (two-dimensional) Rossby model on the β -plane, the related DSI_{Ro} is given by the Jacobi-determinant of just two quantities, namely, of the geopotential height $(B = \frac{1}{f_0}\phi)$ and the absolute vorticity ($\Pi = \zeta_a$). Utilizing the three indices DSI, DSI_{Ro}, and DSI_{Ro} available, one can now test whether a balanced flow (DSI \ll 1) is also balanced on synoptic (DSI_{Ro} \ll 1) or even on the scale of the external Rossby radius (DSI_{Ro} \ll 1) and beyond.

Another possible DSI generalization consists of replacing the reference thermodynamic state change underlying the construction of the index from the isentropic $(p \sim \rho^{\gamma})$ to some polytropic $(p \sim \rho^{\kappa})$ pressure–density relationship, where γ and κ are the isentropic and polytropic exponents, respectively. With a change in this type, a non-vanishing DSI^{κ} can indicate, e.g., deviations from an isothermal, isochoric, or isobaric state for $\kappa = \gamma$, 1, or ∞ , respectively. Furthermore, minimization of DSI^{κ} with respect to κ for a given slowly varying flow field characterizes the diabatic effects in the flow in terms of the most similar polytropic process.

The derivation of a polytropic DSI-family will be the subject of a forthcoming paper, but analogous considerations motivate the present work: The comparison, for one and the same flow field, of DSI-like variables that encode balances under different prevailing moist processes provides diagnostic insights into the aerothermodynamic nature of the flow. Mathematically, in developing a DSI for moist processes, we consider a basis of constituting quantities that generalize the potential temperature, ψ , the Bernoulli function, *B*, and the potential vorticity, II, for model equations that include the effects of moist processes. After a brief summary of the mathematical formalism underlying the original DSI concept, a generalized derivation of the same quantity that directly invokes the second law of thermodynamics is presented in Sec. II. Section III then utilizes the generalized derivation to provide a hierarchy of three DSI-like indices relevant for moist air flows. These indices signal balances for moist flows with and without phase changes and for precipitating and non-precipitating states. Section IV summarizes our results and provides further conclusions.

II. GENERALIZED DERIVATION OF DSI-LIKE VARIABLES

A. Classical derivation of the DSI

Here, we recall the derivation of the DSI for the equations for non-hydrostatic compressible flows of dry air (see Refs. 10 and 15) for later reference. We start with the momentum equation

$$\partial_t \mathbf{v} + \boldsymbol{\xi}_a \times \mathbf{v} + \left(\frac{1}{2}\nabla \mathbf{v}^2 + \frac{1}{\rho}\nabla p + \nabla\phi\right) = \mathbf{F},\tag{4}$$

ARTICLE

where **F** denotes frictional forces, ϕ denotes the geopotential height field, *p* denotes the pressure, ρ denotes the density, and Ω denotes the earth rotation, and we have utilized the Weber transform

$$\mathbf{v} \cdot \nabla \mathbf{v} = \boldsymbol{\xi} \times \mathbf{v} + \frac{1}{2} \nabla \mathbf{v}^2, \tag{5}$$

where $\xi = \nabla \times \mathbf{v}$ and $\xi_a = \xi + 2\Omega$ denote the relative and absolute vorticities, respectively. Under adiabatic conditions, the potential temperature

$$\theta = T \left(\frac{p_0}{p}\right)^{\frac{R_d}{c_{pd}}} \tag{6}$$

is conserved along Lagrangian paths. Here, R_d and c_{pd} are the ideal gas constant and the specific heat capacity at constant pressure for dry air, respectively. Thus, forming the cross product of (4) with $\nabla \theta$, we obtain

$$\left(\partial_{t}\mathbf{v}-\mathbf{F}+\nabla B+\frac{1}{\rho}\nabla p-\nabla H\right)\times\nabla\theta=-(\boldsymbol{\xi}_{a}\times\mathbf{v})\times\nabla\theta=\boldsymbol{\xi}_{a}\,\mathbf{v}\cdot\nabla\theta-\mathbf{v}\,\boldsymbol{\xi}_{a}\cdot\nabla\theta=-\boldsymbol{\xi}_{a}\partial_{t}\theta-\mathbf{v}\,\rho\Pi^{\theta},\tag{7}$$

where

$$B = \frac{1}{2}\mathbf{v}^2 + H + \phi, \quad H = c_{pd}T, \quad \text{and} \quad \Pi^{\theta} = \frac{\boldsymbol{\xi}_a \cdot \nabla \theta}{\rho}$$
(8)

are the Bernoulli function, the enthalpy, and the potential vorticity, respectively. Using the ideal gas law $p = R_d \rho T$, we further obtain

$$\left(\frac{1}{\rho}\nabla p - \nabla H\right) \times \nabla \theta = T(R_d \nabla \ln p - c_{pd} \nabla \ln T) \times \nabla \theta = -c_{pd} T \nabla \ln \theta \times \nabla \theta = 0.$$
(9)

Assuming stationarity and neglecting friction lead to the steady wind for adiabatic, inviscid, and steady flows,¹³

$$\mathbf{v}_{st} = -\frac{1}{\rho \Pi^{\theta}} [\nabla B \times \nabla \theta]. \tag{10}$$

The DSI is designed to signal deviations from this steady wind, and its mathematical representation follows from the continuity equation based on the steady wind,

$$DSI = -\frac{\Pi^{\theta^2}}{\rho} \nabla \cdot (\rho \mathbf{v}_{st}) = -\frac{1}{\rho} \nabla \Pi^{\theta} \cdot (\nabla B \times \nabla \theta) = \frac{1}{\rho} \frac{\partial(\theta, B, \Pi^{\theta})}{\partial(x, y, z)}.$$
(11)

Thus, the DSI indicates local deviations of an atmospheric flow field from a stationary, adiabatic, and inviscid state, i.e., the presence of instationary, viscous, or diabatic processes.

Interpreting the DSI geometrically and regarding isentropic surfaces, the steady wind based on the non-hydrostatic compressible governing equations blows along the isolines of the Bernoulli stream function and of the PV, and the DSI signal indicates non-alignment of these fields in the sense that for non-zero DSI, the vectors $\nabla \theta$, ∇B , and $\nabla \Pi^{\theta}$ are linearly independent. In turn, such non-alignment signals the presence of molecular transport or more general diabatic atmospheric processes.

Previous works corroborate, on the basis of meteorological observations, that the DSI as defined in (11) signals diabatic processes.^{2,5,18} To obtain DSI variants that locate specific diabatic processes, for example, the formation of clouds or extreme precipitation, we will successively include more complex moist processes in the equations of motion and derive related new DSI-like indices in Sec. III.

B. DSI and PV for a multi-component fluid

1. A generalization of the DSI

To generalize the derivation of the DSI for a multi-component fluid, we proceed in analogy Sec. II A. Starting with the corresponding set of equations of motion, we derive the model-dependent steady wind leading to the scalar DSI-field that indicates deviations from this basic state. The point of departure for the derivations is again the momentum equations, which we rewrite here as

$$\partial_t \mathbf{v} + \boldsymbol{\xi}_a \times \mathbf{v} + \nabla B = \mathbf{F} + \mathbf{G},\tag{12}$$

ARTICLE

where

$$B = \frac{1}{2}\mathbf{v}^2 + H + \phi \tag{13}$$

and

$$\mathbf{G} = \nabla H - \frac{1}{\rho} \nabla p = T \nabla S + \sum_{i=1}^{n_{\rm sp}} \mu_i \nabla Y_i \tag{14}$$

are again the Bernoulli function (or total enthalpy) from (8) with an appropriately scaled specific enthalpy *H* adapted to the system under consideration, *G* is the effective diabatic forcing term, *S* is the specific entropy, and $\mu_i = H_i - Ts_i$ and Y_i are the chemical potential and the mass fraction of the *i*th fluid constituent with $i \in \{1, ..., n_{sp}\}$ and n_{sp} denoting the number of fluid components. Let

$$\Pi^{s} = \frac{\boldsymbol{\xi}_{a} \cdot \nabla s}{\rho} \tag{15}$$

denote the Ertel-type potential vorticity based on the entropy s, which satisfies the transport equation

$$\frac{ds}{dt} = \partial_t s + \mathbf{v} \cdot \nabla s = Q_s,\tag{16}$$

with the generalized source term Q_s that subsumes all dissipative and external forcing processes that affect entropy evolution along fluid path lines. Taking the cross product of (12) with ∇s yields

$$(\partial_t \mathbf{v} + \nabla B - \mathbf{F} - \mathbf{G}) \times \nabla s = -(\boldsymbol{\xi}_a \times \mathbf{v}) \times \nabla s = \boldsymbol{\xi}_a \, \mathbf{v} \cdot \nabla s - \mathbf{v} \, \boldsymbol{\xi}_a \cdot \nabla s = -\boldsymbol{\xi}_a \partial_t s - \mathbf{v} \, \rho \Pi^s + \boldsymbol{\xi}_a \, Q_s. \tag{17}$$

Following Schär's procedure for the case of dry air,¹³ we now define a steady wind based on (17) by assuming stationarity ($\partial_t \equiv 0$). This yields

$$\mathbf{v}_{st}^{s} = -\frac{1}{\rho \Pi^{s}} [(\nabla B - \mathbf{G} - \mathbf{F}) \times \nabla s - \boldsymbol{\xi}_{a} Q_{s}].$$
(18)

The definition of the DSI according to Névir,¹⁰ Névir, and Sommer¹¹ then results from the continuity equation for the steady wind with a suitable normalization,

$$\mathrm{DSI}^{s} = -\frac{(\Pi^{s})^{2}}{\rho} \nabla \cdot (\rho \mathbf{v}_{st}^{s}) = \frac{(\Pi^{s})^{2}}{\rho} \nabla \cdot \left[\frac{1}{\Pi^{s}} ((\nabla B - \mathbf{G} - \mathbf{F}) \times \nabla s - \boldsymbol{\xi}_{a} Q_{s}) \right].$$
(19)

For a steady flow, DSI^s vanishes by definition of the steady wind because under these conditions, the steady wind coincides with the actual wind field and satisfies the continuity equation for steady conditions, which amounts to

Note that we have generalized the original DSI concept by allowing for both frictional forces, F, and entropy production, Qs. Of course, when $\mathbf{F} \equiv 0$ and $Q_s \equiv 0$, the indicator is tuned again to adiabatic, frictionless, and steady flows, as discussed in Sec. II A. The generalized DSI concept as represented in (19) will be utilized below to suggest dynamic state indices for the equations of moist air

 $\nabla \cdot (\rho \mathbf{v}_{st}^s) = 0 \quad \Leftrightarrow \quad \mathrm{DSI}^s = 0.$

flow. The entropy (or potential temperature), Bernoulli function, and PV will be adapted to the given model, leading to the formulation of the corresponding steady wind and of a related DSI.

2. Is there a generalization of the potential vorticity for inclusion in the DSI framework?

The vorticity transport equation and the Lagrangian evolution of the entropy-based potential vorticity Π^s can be derived as follows. Again, the point of departure is (12) and (14), which we combine to yield

$$\frac{\partial \mathbf{v}}{\partial t} + \boldsymbol{\xi}_a \times \mathbf{v} + \nabla B = T \nabla s + \sum_{i=1}^{n_{\rm sp}} \mu_i \nabla Y_i + \mathbf{F}.$$
(21)

ARTICLE

Taking the curl yields the vorticity transport equation

$$\frac{\partial \boldsymbol{\xi}}{\partial t} + \nabla \times \left(\boldsymbol{\xi}_a \times \mathbf{v}\right) = \nabla T \times \nabla s + \sum_{i=1}^{n_{\rm sp}} \nabla \mu_i \times \nabla Y_i + \nabla \times \mathbf{F}.$$
(22)

Incorporating the conservation of mass via the continuity equation, multiplying by ∇s , omitting the term ($\nabla T \times \nabla s$) $\cdot \nabla s$, and utilizing (16) lead to the evolution equation for the entropy-based potential vorticity $\Pi^s = (\xi_a \cdot \nabla s)/\rho$,

$$\frac{d\Pi^s}{dt} = \frac{1}{\rho} \left(\sum_{i=1}^{n_{sp}} \nabla \mu_i \times \nabla Y_i + \nabla \times \mathbf{F} \right) \cdot \nabla s + \frac{\boldsymbol{\xi}_a}{\rho} \cdot \nabla Q_s,$$
(23)

where, following the work of Gassmann and Herzog,6

$$\nabla \mu_i = \frac{1}{\rho_i} \nabla p_i - s_i \nabla T.$$
(24)

Clearly, for frictionless, $\mathbf{F} \equiv 0$, and adiabatic, $Q_s \equiv 0$, flow, we must require in addition that the solenoidal first terms on the right-hand side vanish as well (see, e.g., Ref. 14).

With a more general advected scalar, ψ , used instead of entropy in forming the PV and DSI variables, Π^{ψ} and DSI^{ψ}, respectively, one would require

$$\mathbf{F} = \mathbf{0}, \quad \frac{d\psi}{dt} = Q_{\psi} = \mathbf{0}, \tag{25}$$

and

$$\nabla \psi \cdot \left(\nabla T \times \nabla s + \sum_{i=1}^{n_{\text{sp}}} \nabla \mu_i \times \nabla Y_i \right) = 0$$
(26)

for Π^{ψ} to be a Lagrangian conserved quantity.

Analogous potential vorticity equations can also be derived for models, including moist processes. However, in general, retaining ρ as the total density and using the entropy S for the appropriate multi-species atmospheric models with moisture, we are not able to find a scalar ψ such that the solenoidal term vanishes in all cases. Schubert¹⁴ discussed the evolution of potential vorticities, Π^{θ_x} , formulated in terms of different potential temperature-like variables θ_x . He demonstrated that the solenoidal term always vanishes when using the virtual potential temperature, θ_{ρ} , which is effectively a function of density and pressure only. This ansatz hides the influences of particular moist phase conversions, however, and this is why Gibb's form involving $T \nabla S$ rather than $\nabla p / \rho$ is used in the momentum equation (21) here and why the subsequent derivations of DSI-like quantities are based on entropy rather than on potential temperatures.

(20)

C. The DSI for dry air

In the following, the steady wind and the DSI for the non-hydrostatic compressible governing equations for dry air are derived corroborating the DSI introduced by Névir.¹⁰ For the derivations of the DSI for moist air, we follow the same steps but adapt the entropy, the Bernoulli function, and the potential vorticity to the particular models.

Owing to the second law of thermodynamics, entropy is conserved along particle paths for adiabatic motions, and for dry air, it satisfies the relation

$$\frac{ds_{(d)}}{dt} = c_{pd} \frac{d\ln T}{dt} - R_d \frac{d\ln p}{dt}.$$
(27)

Integrated, this yields the entropy equation of state,

$$s_{(d)} = c_{pd} \ln \frac{T}{T_0} - R_d \ln \frac{p}{p_0},$$
(28)

where c_{pd} denotes the specific heat capacity at constant pressure for dry air; see also Table I. We remark that the commonly used notation of S for the entropy is changed here to $s_{(d)}$, indicating that we consider the entropy for dry air. This will allow us to distinguish between the different entropies for dry air (d), moist air with vapor only (v), cloudy air (c), and precipitating air (r) later on. The other quantities will be indexed accordingly.

With the entropy being a conserved quantity for adiabatic motion, a natural choice for ψ is

$$\psi = s_{(d)},\tag{29}$$

and, due to (25), the associated potential vorticity

$$\Pi_{(d)}^{s} = \frac{\xi_a \cdot \nabla s_{(d)}}{\rho} \tag{30}$$

is also conserved during frictionless motion.

For the dry air case, the enthalpy $h_{(d)}$ (up to integration constants) is defined by

$$h_{(d)} = c_{pd}T. \tag{31}$$

Using the ideal gas law

$$p = R_d \rho T, \tag{32}$$

it follows that

$$dh_{(d)} = Tds_{(d)} + \frac{1}{\rho}dp.$$
(33)

Thus, setting $H_{(d)} = h_{(d)}$ in the Bernoulli function in (13), we obtain the following identity for $G_{(d)}$ according to (14):

$$\mathbf{G}_{(d)} = T \nabla s_{(d)},\tag{34}$$

which satisfies, obviously, $\mathbf{G}_{(d)} \times \nabla s_{(d)} = 0$, and the steady wind is thus given by

$$\mathbf{v}_{st(d)}^{s} = \frac{1}{\rho \Pi_{(d)}^{s}} \nabla s_{(d)} \times \nabla B_{(d)}.$$
(35)

|--|

C_{Dd}	1005	J\kg\K	Dry air specific heat capacity at constant pressure
\dot{R}_d	287	J\kg\K	Dry air gas constant
C _{pv}	1850	J\kg\K	Water vapor specific heat capacity at constant pressure
\hat{R}_{ν}	462	J\kg\K	Water vapor gas constant
c_l	4218	J\kg\K	Liquid water specific heat capacity
L _{ref}	$2.5 \cdot 10^6$	J\kg	Latent heat of condensation at reference conditions

Then, the DSI according to (19) reduces to

$$\mathrm{DSI}^{s}_{(d)} = \frac{1}{\rho} \nabla \Pi^{s}_{(d)} \cdot (\nabla s_{(d)} \times \nabla B_{(d)}), \tag{36}$$

where we have used the fact that $\nabla \cdot (\nabla s_{(d)} \times \nabla B_{(d)}) = 0$. Following the work of Névir,¹⁰ the DSI can also be expressed as

$$\mathrm{DSI}_{(d)}^{s} = \frac{1}{\rho} \frac{\partial(s_{(d)}, B_{(d)}, \Pi_{(d)}^{s})}{\partial(x, y, z)}.$$
(37)

Remark 1 (The DSI in terms of the potential temperature). As explained in the Introduction, the DSI has been defined by Névir¹⁰ in terms of the potential temperature

$$\psi = \theta = \theta_0 \, \exp\left(\frac{s_{(d)}}{c_{pd}}\right),\tag{38}$$

where θ_0 is the potential temperature at reference conditions, for which according to (6), the identity $\theta_0 = T_0$ holds. This quantity is also conserved during adiabatic frictionless motion because θ_0 and c_{pd} are constants and so is the related Ertel's potential vorticity

$$\Pi^{\theta}_{(d)} = \frac{\xi_a \cdot \nabla \theta}{\rho}.$$
(39)

With these definitions and according to (19), the DSI as introduced by Névir¹⁰ reads

$$\mathrm{DSI}_{(d)}^{\theta} = \frac{1}{\rho} \nabla \Pi_{(d)}^{\theta} \cdot (\nabla \theta \times \nabla B_{(d)}) = \frac{\theta^2}{c_{bd}^2} \mathrm{DSI}_{(d)}^{s}, \tag{40}$$

and it is proportional to the entropy-based version of the DSI discussed above. This, in particular, means that from the perspective of applications, where the DSI is used to signal deviations from a balanced state, these two versions of the DSI are equally good.

III. DSI VARIANTS WITH MOISTURE AND PHASE CHANGES

A. The DSI for moist air

Here, we derive the dynamic state index based on the equations of motion for moist air, but without phase changes, which will be incorporated in Sec. III B. Water components are introduced via the mixing ratios. For water vapor, the latter is defined, e.g., as the ratio of the density of water vapor ρ_v over the density of dry air ρ_d ,

$$q_{\nu} = \frac{\rho_{\nu}}{\rho_d} = E \frac{e}{p_d}, \qquad \text{where} \quad E = \frac{R_d}{R_{\nu}}$$
(41)

and where *e* is the vapor pressure and R_{ν} denotes the ideal gas constant for water vapor; see also Table I. Here, we have used that according to the ideal gas law for dry air and water vapor,

$$p_d = \rho_d R_d T$$
 and $e = p_v = \rho_v R_v T.$ (42)

For the total pressure *p* of moist air (without liquid water), according to Dalton's law, we thus have

$$p = p_d + e = \rho_d (R_d + q_\nu R_\nu) T \rightleftharpoons \rho_d R' T$$
(43)

or, equivalently,

Journal of

$$c'_{p} = c_{pd} + q_{\nu}c_{p\nu}, \qquad R' = R_{d} + q_{\nu}R_{\nu}.$$
 (48)

The differential reads

$$ds_{(\nu)} = c'_p d \ln T - R' d \ln p + \left(c_{p\nu} \ln \frac{T}{T_0} - R_{\nu} \ln \frac{e}{e_0}\right) dq_{\nu},$$
(49)

where we have used $\ln e/e_0 = \ln p/p_0 + \ln q_v/q_{v0} - \ln(1 + q_v/E)$. Note that due to the conservation of q_v , we find

$$\frac{ds_{(\nu)}}{dt} = c'_p \frac{d\ln T}{dt} - R' \frac{d\ln p}{dt}.$$
(50)

During isentropic motion, $s_{(\nu)}$ is conserved and we choose

Making use of (41), the entropy can alternatively be rewritten as

$$\Psi = s_{(\nu)} \quad \text{and} \quad \Pi^s_{(\nu)} = \frac{\xi_a \cdot \nabla s_{(\nu)}}{\rho}.$$
(51)

To obtain the appropriate definition for the steady wind and the DSI for moist air with water vapor, it now remains to determine the Bernoulli function $B_{(v)}$ for moist air and accordingly the remainder function $G_{(v)}$. The total moist enthalpy is (up to constants) given by

$$h_{(v)} = c'_p T, \tag{52}$$

satisfying

$$dh_{(\nu)} = c'_{p} dT + c_{p\nu} T dq_{\nu}.$$
(53)

We set

$$H_{(\nu)} = \frac{h_{(\nu)}}{1 + q_{\nu}},\tag{54}$$

where we note that the normalization of $h_{(v)}$ by $(1 + q_v) = \frac{\rho}{\rho_d}$ accounts for the fact that $\frac{1}{\rho_d} \nabla p$ arises in the gradient of $H_{(v)}$ or $T \nabla s_{(v)}$, respectively, instead of $\frac{1}{\rho} \nabla p$ appearing in the definition of **G**; see also (58).

that q_v is conserved, i.e., we do not allow for phase changes, and that there are no liquid water constituents. This amounts to

Following the work of Emanuel,⁴ the total entropy $s_{(v)}$ for the moist air with water vapor only is then given by

where ρ is the total density $\rho = \rho_d + \rho_v$, and T_v is referred to as the virtual temperature; see also Refs. 3 and 4. In a first step, we assume here

 $\frac{dq_{\nu}}{dt} = \partial_t q_{\nu} + \mathbf{v} \cdot \nabla q_{\nu} = 0.$

 $s_{(\nu)} = (c_{pd} + q_{\nu}c_{p\nu})\ln\frac{T}{T_0} - \left(R_d \ln\frac{p_d}{p_0} + q_{\nu}R_{\nu}\ln\frac{e}{e_0}\right),$

where c_{pv} denotes the specific heat capacity at constant pressure for water vapor (see also Table I) and 0-indices denote reference values.

 $s_{(\nu)} = c'_p \, \ln \frac{T}{T_0} - R' \, \ln \frac{p}{p_0} + R' \, \ln \left(1 + \frac{q_\nu}{E}\right) - q_\nu R_\nu \, \ln \frac{q_\nu}{q_{\nu 0}},$

$$p = R_d \rho T \frac{1 + \frac{q_\nu}{E}}{1 + q_\nu} =: R_d \rho T_\nu, \tag{44}$$

ARTICLE

62. 123101-8

(45)

(46)

(47)

Using (43) and (49), one can compute

$$\frac{1}{\rho_d} \nabla p = TR' \nabla \ln p$$

$$= c'_p \nabla T - T \nabla s_{(\nu)} + T \left(c_{p\nu} \ln \frac{T}{T_0} - R_\nu \ln \frac{e}{e_0} \right) \nabla q_\nu$$
(55)

$$= (1+q_{\nu})\nabla H_{(\nu)} - T\nabla s_{(\nu)} + (1+q_{\nu})\Lambda_{(\nu)}\nabla q_{\nu},$$
(56)

where we denote

$$\Lambda_{(\nu)} = \frac{1}{1+q_{\nu}} \left(H_{(\nu)} + c_{p\nu} T \left(\ln \frac{T}{T_0} - 1 \right) - R_{\nu} T \ln \frac{e}{e_0} \right)$$
(57)

such that by the definition of G in (14), we have

$$\mathbf{G}_{(\nu)} = \nabla H_{(\nu)} - \frac{\nabla p}{\rho} = \frac{1}{1+q_{\nu}} T \nabla s_{(\nu)} - \Lambda_{(\nu)} \nabla q_{\nu}, \tag{58}$$

and for the cross product,

$$\mathbf{G}_{(\nu)} \times \nabla s_{(\nu)} = -\Lambda_{(\nu)} \nabla q_{\nu} \times \nabla s_{(\nu)}. \tag{59}$$

The Bernoulli function for moist air without phase changes reads

$$B_{(\nu)} = \frac{1}{2}\mathbf{v}^2 + H_{(\nu)} + \phi.$$
(60)

Therefore, the steady wind results in

$$\mathbf{v}_{st,(\nu)} = -\frac{1}{\rho \Pi_{(\nu)}} \Big(\big(\nabla B_{(\nu)} + \Lambda_{(\nu)} \nabla q_{\nu} \big) \times \nabla s_{(\nu)} \Big).$$
(61)

This steady wind describes a basic state that contains moist air without phase changes. Compared to the steady wind for dry air, this basic state $\mathbf{v}_{st,(\nu)}$ has an additional term that contains the water vapor mixing ratio. Deviations from this basic state are related to the generation of clouds and precipitation. These deviations are captured by the DSI for moist air,

$$\mathrm{DSI}_{(\nu)} = \frac{\left(\Pi_{(\nu)}\right)^2}{\rho} \nabla \cdot \left[\frac{1}{\Pi_{(\nu)}} \left(\nabla B_{(\nu)} + \Lambda_{(\nu)} \nabla q_{\nu}\right) \times \nabla s_{(\nu)}\right].$$
(62)

Comparing the $DSI_{(v)}$ to $DSI_{(d)}$ for dry air (36), the same additional term as in the steady wind representation is added. Noting that one velocity component of this steady wind is directed along the isosurfaces of the mixing ratio of water vapor, the DSI captures deviations from this alignment. The $DSI_{(v)}$ -signals are similar to the signals of the $DSI_{(d)}$ for dry air, but indicating in more detail the process of moist air transport: The basic state is characterized by vanishing advection tendencies. The DSI captures deviations from the basic state and thus diagnoses the advection of moisture. Therefore, the $DSI_{(v)}$ for moist air without phase changes captures the formation and dissolving of clouds. While the $DSI_{(d)}$ for dry air signaled deviations from the adiabatic, inviscid, and steady basic state, the difference $DSI_{(d)} - DSI_{(v)}$ can be used to locate local deviations from pure transport of moisture.

Remark 2 (The DSI based on a modified potential temperature). In the moist air case, the total derivative of entropy is expressed by that of a modified potential temperature θ' ,

$$\frac{ds_{(\nu)}}{dt} = c'_p \frac{d\ln T}{dt} - R' \frac{d\ln p}{dt} = c'_p \frac{d\ln \theta'}{dt},\tag{63}$$

where

$$\theta' = T\left(\frac{p_0}{p}\right)^{\frac{R'}{c_p}}.$$
(64)

See also the work of Emanuel.⁴ Thus, during isentropic motion, θ' is conserved and we could therefore also choose

ARTICLE scita

$$\psi = \theta' \quad \text{and} \quad \Pi^{\theta'} = \frac{\xi_a \cdot \nabla \theta'}{\rho}.$$
(65)

We note, however, that the potential vorticity $\Pi^{\theta'}$ is not a conserved quantity anymore since $s_{(v)} = F(\theta', q_v)$. The simple structure in (63) is only obtained for the total derivative due to the conservation of q_v but does not hold for the spatial gradient, which involves additional terms proportional to ∇q_v . See also (49). Thus, the solenoidal term in (25) does not vanish anymore. Nevertheless, following the steps from above, the DSI based on θ' reads

$$\mathrm{DSI}_{(\nu)}^{\theta'} = \frac{(\Pi_{(\nu)}^{\theta'})^2}{\rho} \nabla \cdot \left[\frac{1}{\Pi_{(\nu)}^{\theta'}} \Big((\nabla B_{(\nu)} + \Lambda_{(\nu)}^{\theta'} \nabla q_{\nu}) \times \nabla \theta' \Big) \right]$$
(66)

with

$$\Lambda_{(\nu)}^{\theta'} = \frac{1}{1+q_{\nu}} \left((c_{p\nu} - c_{pd})T + \frac{R_{\nu}c_{pd} - R_d c_{p\nu}}{c'_p}T \ln \frac{p_0}{p} \right).$$
(67)

B. The DSI for cloudy air

Here, we account for water vapor and cloud liquid water with mixing ratios

$$q_{\nu} = \frac{\rho_{\nu}}{\rho_d}, \qquad q_c = \frac{\rho_c}{\rho_d},\tag{68}$$

respectively, and for their phase changes in the equations of motion. This leads us to expressions for the steady wind and DSI for cloudy air. Moreover, cloud liquid water, with density ρ_c , is assumed to be advected by the mean wind, i.e., not to precipitate. Then, the total water amount corresponds to

$$q_T = q_\nu + q_c, \tag{69}$$

and the total liquid water amount is

 $q_l = q_c. \tag{70}$

For the moisture components, we have the balance laws

$$\frac{dq_{\nu}}{dt} = -Q_{cd}, \qquad \frac{dq_c}{dt} = Q_{cd}, \tag{71}$$

where Q_{cd} denotes the condensation and evaporation rate. Obviously, the total amount of moisture is conserved, i.e.,

$$\frac{dq_T}{dt} = 0. (72)$$

The total density ρ is given by $\rho = \rho_d + \rho_v + \rho_c$, and following common approximations, the liquid water content is assumed to not exert any pressure on the air parcels so that

$$p = p_d + p_v = p_d + e = \rho_d R' T = \rho R_d T \frac{1 + \frac{q_v}{E}}{1 + q_T},$$
(73)

where $R' = R_d + q_v R_v$ as above.^{3,4} The total enthalpy in the presence of liquid water reads (again up to constants)

$$h_{(c)} = c_p' T \tag{74}$$

(see, e.g., Ref. 4), where

$$c'_{p} = c_{pd} + q_{\nu}c_{p\nu} + q_{l}c_{l}, \tag{75}$$

with c_l being the specific heat capacity of liquid water; see Table I. Neglecting the temperature dependence of the specific heat capacities provides a good approximation above the melting point so that the latent heat of vaporization, L, which satisfies

$$dL = (c_{p\nu} - c_l)dT,\tag{76}$$

becomes linear in the temperature,

Mathematical Physics

Journal of

$$L = L_0 + (c_{p\nu} - c_l)T \quad \text{with} \quad L_0 = L(T_0) - (c_{p\nu} - c_l)T_0.$$
(77)

Furthermore, the entropy in the case of cloudy air is given by

$$s_{(c)} = c'_p \ln \frac{T}{T_0} - R_d \ln \frac{p_d}{p_0} - q_\nu R_\nu \ln \frac{e}{e_0}.$$
(78)

As in previous steps, we additionally introduce

$$H_{(c)}=\frac{h_{(c)}}{1+q_T}.$$

For the gradients, we then obtain

$$\nabla h_{(c)} = c'_p \nabla T + T(c_{p\nu} \nabla q_\nu + c_l \nabla q_l)$$
⁽⁷⁹⁾

and

$$\nabla H_{(c)} = \frac{\nabla h_{(c)}}{1+q_T} - \frac{H_{(c)}}{1+q_T} \nabla q_T.$$
(80)

Making use of the ideal gas laws for dry air and water vapor for the entropy, accordingly, we obtain

$$\nabla s_{(c)} = c'_p \nabla \ln T - \frac{1}{T} \frac{\nabla p}{\rho_d} + \ln \frac{T}{T_0} (c_{p\nu} \nabla q_\nu + c_l \nabla q_l) - R_\nu \ln \frac{e}{e_0} \nabla q_\nu, \tag{81}$$

and multiplication by $T\rho_d/\rho = T/(1 + q_T)$ yields

$$\frac{\nabla p}{\rho} = -\frac{T \nabla s_{(c)}}{1+q_T} + \frac{c'_p \nabla T}{1+q_T} + \left(c_{p\nu}T \ln \frac{T}{T_0} - R_\nu T \ln \frac{e}{e_0}\right) \nabla q_\nu + c_l T \ln \frac{T}{T_0} \nabla q_c \tag{82}$$

such that for $G_{(c)}$, we obtain

$$\mathbf{G}_{(c)} = \nabla H_{(c)} - \frac{\nabla p}{\rho} = \frac{T \nabla s_{(c)}}{1 + q_T} - \Lambda_{(c),1} \nabla q_\nu - \Lambda_{(c),2} \nabla q_l, \tag{83}$$

where

$$\Lambda_{(c),1} = \frac{1}{1+q_T} \left(H_{(c)} + c_{pv} T \left(\ln \frac{T}{T_0} - 1 \right) - R_v T \ln \frac{e}{e_0} \right), \tag{84}$$

$$\Lambda_{(c),2} = \frac{1}{1+q_T} \left(H_{(c)} + c_l T \left(\ln \frac{T}{T_0} - 1 \right) \right)$$
(85)

resemble (57). Again, we choose

$$\psi = s_{(c)} \quad \text{and} \quad \Pi_{(c)} = \frac{\xi_a \cdot \nabla s_{(c)}}{\rho}.$$
(86)

Furthermore,

$$\mathbf{G}_{(c)} \times \nabla s_{(c)} = -(\Lambda_{(c),1} \nabla q_{\nu} + \Lambda_{(c),2} \nabla q_l) \times \nabla s_{(c)}, \tag{87}$$

while the Bernoulli function for cloudy air reads

$$B_{(c)} = \frac{1}{2}\mathbf{v}^2 + H_{(c)} + \phi.$$
(88)

Finally, the steady wind results in

$$\mathbf{v}_{st,(c)} = \frac{1}{\rho \Pi_{(c)}} \Big[\nabla s_{(c)} \times \big(\nabla B_{(c)} + \Lambda_{(c),1} \nabla q_{\nu} + \Lambda_{(c),2} \nabla q_l \big) \Big].$$
(89)

The steady wind for cloudy air describes an atmospheric basic state that includes water vapor, liquid water, and phase changes but no precipitation and implies that

$$\mathrm{DSI}_{(c)} = \frac{(\Pi_{(c)})^2}{\rho} \nabla \cdot \left[\frac{1}{\Pi_{(c)}} \left(\left(\nabla B_{(c)} + \Lambda_{(c),1} \nabla q_{\nu} + \Lambda_{(c),2} \nabla q_l \right) \times \nabla s_{(c)} \right) \right].$$
(90)

Thus, compared to the previously derived $\mathbf{v}_{st,(v)}$ and $DSI_{(v)}$ for moist air without phase changes, the $DSI_{(c)}$ for cloudy air is extended by a term proportional to the gradient of the liquid water content, and latent heating appears explicitly through the definition of $s_{(c)}$, $B_{(c)}$ and $\Lambda_{(c),i}$, respectively. The utility of this new index is that the difference $DSI_{(c)} - DSI_{(v)}$ indicates processes associated with cloud generation or dissolution.

In Sec. III C, we will further include the (vertical) transport of precipitation to derive a DSI variant that signals, e.g., extreme or less intense precipitation.

Remark 3 (Alternative expressions for the thermodynamic quantities). Often, the enthalpy in the case of liquid water being present is stated as (again up to constants)

$$h_{(c)} = (c_{pd} + q_T c_l)T + Lq_v$$

See, e.g., Ref. 4. Using (77), this coincides with (74) up to the constant value L_0 . Accordingly, a common formulation of the entropy for cloudy air is

$$s_{(c)} = (c_{pd} + q_T c_l) \ln \frac{T}{T_0} - R_d \ln \frac{p_d}{p_0} + \frac{Lq_\nu}{T} - q_\nu R_\nu \ln \frac{e}{e^*}.$$
(91)

According to Ref. 4, the latent heat L satisfies

$$\frac{L}{T} = (c_{pv} - c_l) \ln \frac{T}{T_0} - R_v \ln \frac{e^*}{e_0},$$
(92)

which is consistent with (76) owing to the Clausius–Clapeyron relation for the saturation vapor pressure e^{*},

$$d \ln e^* = \frac{LdT}{R_{\nu}T^2}.$$
 (93)

This verifies, in particular, the equivalence of (91) and (78).

C. The DSI for precipitating air

To cover the precipitation of rain, the "rain amount"

$$q_r = \frac{\rho_r}{\rho_d} \tag{94}$$

is introduced and its evolution includes vertical sedimentation with the terminal fall velocity, V_r . Then, the total water amount and total density correspond to

$$q_T = q_v + q_c + q_r, \qquad \rho = \rho_d + \rho_v + \rho_c + \rho_r,$$
 (95)

and the liquid water content is determined by

$$q_l = q_c + q_r. \tag{96}$$

The moisture quantities satisfy the balance laws

$$\frac{dq_v}{dt} = -Q_{cd} + Q_{ev},\tag{97}$$

$$\frac{dq_c}{dt} = Q_{cd} - Q_{ac} - Q_{cr},\tag{98}$$

$$\frac{dq_r}{dt} - \frac{1}{\rho_d} \partial_z (\rho_d V_r q_r) = -Q_{ev} + Q_{ac} + Q_{cr}, \tag{99}$$

where Q_{cd} again denotes condensation and evaporation rates, Q_{ev} denotes the evaporation rate of rain, Q_{ac} denotes the autoconversion rate of cloud water into rain once droplets grow big enough, and Q_{cr} is the collection rate of cloud water by the falling rain. The total amount of moisture is conserved up to the relative vertical transport of precipitation so that

$$\frac{dq_T}{dt} = \frac{1}{\rho_d} \partial_z (\rho_d V_r q_r). \tag{100}$$

The terminal fall velocity of precipitation also affects the momentum balance (12), which is extended by an additional term

$$\mathbf{W}_r = \frac{1}{1+q_T} \partial_z (q_r V_r \mathbf{v}) \tag{101}$$

on the right-hand side (see Refs. 3 and 7), which is typically neglected in the literature. In an asymptotic analysis for deep convective clouds, it was found not to play a role in the leading-order dynamics on shorter time scales, but the term could get to be relevant for longer time scales or over large areas of precipitation.⁷ This is also in agreement with Ref. 3 and references therein. As we are interested here in analyzing warm convective events and local processes, it is acceptable to assume

$$\mathbf{W}_r = \mathbf{0}.\tag{102}$$

Then, the steady wind can be derived in a similar fashion as before, and following the earlier derivations for cloudy air by replacing q_T with (95) and q_l with (96), we obtain the same expressions for $B_{(r)}$, $\mathbf{G}_{(r)}$, $H_{(r)}$, $\Pi_{(r)}$, $\Lambda_{(r),i}$ as for $B_{(c)}$, $\mathbf{G}_{(c)}$, $H_{(c)}$, $\Pi_{(c)}$, $\Lambda_{(c),i}$. The precipitation terms, however, affect the entropy balance by constituting a source term

$$\frac{ds_{(r)}}{dt} = c_l \ln \frac{T}{T_0} \frac{dq_T}{dt} = c_l \ln \frac{T}{T_0} \frac{1}{\rho_d} \partial_z (\rho_d V_r q_r) \eqqcolon Q_{s_{(r)}},$$
(103)

and the generalized construction of the steady wind yields

$$\mathbf{v}_{st,(r)} = \frac{1}{\rho \Pi_{(r)}} \Big[\nabla s_{(r)} \times \big(\nabla B_{(r)} + \Lambda_{(r),1} \nabla q_{\nu} + \Lambda_{(r),2} \nabla q_l \big) + \boldsymbol{\xi}_a \, Q_{s_{(r)}} \Big].$$
(104)

Thus, for the $DSI_{(r)}$, we have

$$\mathrm{DSI}_{(r)} = \frac{(\Pi_{(r)})^2}{\rho} \nabla \cdot \left[\frac{1}{\Pi_{(r)}} \left(\left(\nabla B_{(r)} + \Lambda_{(r),1} \nabla q_T + \Lambda_{(r),2} \nabla q_\nu \right) \times \nabla s_{(r)} - \boldsymbol{\xi}_a \, Q_{s_{(r)}} \right) \right]. \tag{105}$$

Relative to the DSI for dry air in (36), the $DSI_{(r)}$ indicates deviations from a basic state to the balance of which both phase changes in water and the (vertical) transport of precipitation contribute substantially. In turn, comparisons of the $DSI_{(r)}$ with the moist and cloudy air variants, $DSI_{(v)}$ and $DSI_{(c)}$, respectively, allow the user to distinguish regions in which different combinations of these processes balance each other.

IV. CONCLUSION

For the non-hydrostatic compressible governing equations without moist processes, non-zero values of the scalar dynamic state index, DSI, indicate non-stationary, diabatic, and dissipative atmospheric processes. This work generalized this concept to moist atmospheric flows, ultimately including phase changes and precipitation. The point of departure for the present developments is the observation that the original dry air DSI has a representation in terms of the mass flow divergence of Schär's¹³ "steady wind," \mathbf{v}_{st} ,

$$DSI = \frac{1}{\rho} \frac{\partial(\theta, B, \Pi^{\theta})}{\partial(x, y, z)} = -\frac{\Pi^2}{\rho} \nabla \cdot (\rho \mathbf{v}_{st}^{\theta}).$$
(106)

It is difficult to see how the determinant of gradients of the constitutive Lagrangian conserved quantities (θ , B, Π^{θ}), i.e., of potential temperature, Bernoulli function, and potential vorticity, respectively, can be generalized to thermodynamically more complex situations. In contrast, generalization of the concept of the steady wind has turned out to be accessible and has allowed us to achieve the stated goal.

Thus, in a hierarchical fashion, we have introduced three generalizations to include moist processes in the DSI concept. First, we included water vapor neglecting phase changes. Second, we considered water vapor together with phase changes to account for cloud formation, and third, we have included the fallout of precipitation. For all models, we first derived the associated steady wind representing the basic state, noting that only the basic state for moist air without phase changes still characterizes adiabatic conditions. The second generalization of the basic state incorporates diabatic but also reversible processes. With these preliminaries, the DSI is given by expressions analogous to the last term in (106), which can be transferred to all models once appropriate analogs to the potential vorticity Π and the steady wind representations, for dry air,

$$\mathbf{v}_{st,(d)} = \frac{1}{\rho \Pi_{(d)}} \Big[\nabla s_{(d)} \times \nabla B_{(d)} \Big], \tag{107}$$

moist air,

$$\mathbf{v}_{st,(\nu)} = \frac{1}{\rho \Pi_{(\nu)}} \Big[\nabla s_{(\nu)} \times \big(\nabla B_{(\nu)} + \Lambda_{(\nu)} \nabla q_{\nu} \big) \Big], \tag{108}$$

cloudy air,

$$\mathbf{v}_{st,(c)} = \frac{1}{\rho \Pi_{(c)}} \Big[\nabla s_{(c)} \times \big(\nabla B_{(c)} + \Lambda_{(c),1} \nabla q_{\nu} + \Lambda_{(c),2} \nabla q_l \big) \Big], \tag{109}$$

and fallout of precipitation,

$$\mathbf{v}_{st,(r)} = \frac{1}{\rho \Pi_{(r)}} \Big[\nabla s_{(r)} \times \big(\nabla B_{(r)} + \Lambda_{(r),1} \nabla q_{\nu} + \Lambda_{(r),2} \nabla q_l \big) + \boldsymbol{\xi}_a \, Q_{s_{(r)}} \Big], \tag{110}$$

where the density ρ and the pressure *p* denote the total density and total pressure for each of the different aerodynamic models. Comparing the dry air case, where the steady wind blows parallel to level sets of the Bernoulli function on isentropic surfaces, with the moist air case, an additional velocity component appears that is directed along the isolines of the mixing ratio of water vapor. If phase changes take place, liquid water needs to be accounted for, too, which generates an additional contribution to the steady wind. The latent heat then arises in the definition of the entropy and potential vorticity.

With these results, the new DSI for moist aerothermodynamics results from the respective generalizations of steady wind mass flux divergence term on the right-hand side of (106). For conservative systems, the DSI can still equivalently be formulated based on Jacobian-determinants:

$$DSI_{(d)} = \frac{1}{\rho_d} \nabla \Pi_{(d)} \cdot (\nabla s_{(d)} \times \nabla B_{(d)}) = \frac{1}{\rho} \frac{\partial(s, B, \Pi)}{\partial(x, y, z)}$$
$$= \frac{\Pi_{(d)}^2}{\rho} \nabla \cdot \left[\frac{1}{\Pi_{(d)}} (\nabla B_{(d)} \times \nabla s_{(d)}) \right],$$
(111)

$$DSI_{(\nu)} = \frac{\Pi_{(\nu)}^2}{\rho} \nabla \cdot \left[\frac{1}{\Pi_{(\nu)}} \left(\left(\nabla B_{(\nu)} + \Lambda_{(\nu)} \nabla q_{\nu} \right) \times \nabla s_{(\nu)} \right) \right]$$
$$= \frac{1}{\rho} \left(\frac{\partial(s_{(\nu)}, B_{(\nu)}, \Pi_{(\nu)})}{\partial q_{\nu}} - \Lambda_{(\nu)} \frac{\partial(\Pi_{(\nu)}, q_{\nu}, s_{(\nu)})}{\partial q_{\nu}} - \Pi_{(\nu)} \frac{\partial(\Lambda_{(\nu)}, q_{\nu}, s_{(\nu)})}{\partial q_{\nu}} \right)$$
(112)

$$= \frac{1}{\rho} \left(\frac{\langle (y) | (y') \rangle \langle (y') \rangle}{\partial (x, y, z)} - \Lambda_{(y)} \frac{\langle (y) | (y') \rangle}{\partial (x, y, z)} - \Pi_{(y)} \frac{\langle (y) | (y') \rangle}{\partial (x, y, z)} \right), \tag{112}$$

$$\mathrm{DSI}_{(c)} = \frac{\Pi_{(c)}}{\rho} \nabla \cdot \left[\frac{1}{\Pi_{(c)}} \left(\nabla B_{(c)} + \Lambda_{(c),1} \nabla q_{\nu} + \Lambda_{(c),2} \nabla q_{c} \right) \times \nabla s_{(c)} \right], \tag{113}$$

$$\mathrm{DSI}_{(r)} = \frac{\Pi_{(r)}^2}{\rho} \nabla \cdot \left[\frac{1}{\Pi_{(r)}} \left(\left(\nabla B_{(r)} + \Lambda_{(r),1} \nabla q_v + \Lambda_{(r),2} \nabla (q_c + q_r) \right) \times \nabla s_{(r)} - \boldsymbol{\xi}_a \, Q_{s_{(r)}} \right) \right]. \tag{114}$$

	Entropy	PV	Specific DSI signals
Dry air	s _(d) Conserved	$\Pi_{(d)}$	$DSI_{(d)} \neq 0$ All diabatic (frictional non-steady)
	No advection	No advection	Processes
Moist air	s(ν) Conserved No advection	Π _(ν) Conserved No advection	$DSI_{(v)} - DSI_{(d)} \neq 0$ Transport of moist air Variations of the humidity
Cloudy air	$s_{(c)}$ Conserved No advection	$\Pi_{(c)}$ Conserved No advection	$DSI_{(c)} - DSI_{(v)} \neq 0$ The generation and dissolving of clouds
Fallout of rain	$s_{(r)}$ Not conserved Advection	$\Pi_{(r)}$ Not conserved Advection	$DSI_{(r)} - DSI_{(c)} \neq 0$ Variations of precipitation (e.g., in the form of ice)

TABLE II. Physical processes and characterizations, the advections of the entropy, and the PV with respect to the steady wind vanish if they are conserved.

Reformulating accordingly $DSI_{(c)}$ as a sum of five Jacobian-determinants is straightforward. Only in the presence of precipitation, with the Lagrangian conservation of the relevant constituents of the DSI no longer guaranteed, can the DSI no longer be written solely in terms of Jacobi-determinants. For convenience, we have summarized all formulas needed to directly evaluate the various DSI variants in Appendix A.

For the derivations in this paper, we have preferred using the entropy as the relevant advected scalar and in formulating a potential vorticity variable over any one of the various possible potential temperatures. Our motivation is that the entropy has a unique physical meaning across all cases, which is generally not true for potential temperatures in complex multicomponent flows. This is not to say, however, that a particular choice of a potential temperature variable could not streamline some of the derivations or have advantages in terms of physical interpretability. For example, by adopting the purely pressure and density dependent potential temperature θ_{ρ} in Ref. 14 for the formulation, one can enforce the potential vorticity to remain a Lagrangian conserved quantity even in the presence of precipitation, and this may help in interpretations or further in-depth analyses. The recent study by Baumgartner *et al.*,¹ who investigated the potential temperature in terms of temperature dependent specific heat capacities $c_p(T)$, might also be of interest in this context, and it could be incorporated in the present framework as well.

The $DSI_{(d)}$ for dry air, $DSI_{(v)}$ for moist air, the $DSI_{(c)}$ for cloudy air, and the $DSI_{(r)}$ for precipitating air indicate deviations of local flow conditions from inviscid and steady state motions. Differences of DSI variants that encode different steady balances can be utilized to identify and locate particular diabatic processes. While the classical $DSI_{(d)}$ for dry air reflects general diabatic processes, the basic state of $DSI_{(v)}$ additionally contains water vapor. Thus, the difference $DSI_{(d)} - DSI_{(v)}$ indicates the transport of moist air. Considering cloudy air, i.e., adding the effects of liquid water and its phase changes to the equations of motion and thus to the basic state, the $DSI_{(c)}$ for cloudy air indicates general precipitation processes and other diabatic processes, such as radiation. The according difference $DSI_{(v)} - DSI_{(c)}$, therefore, signals the generation and dissolution of clouds. Accounting, in addition, for the (vertical) transport of precipitation, the difference $DSI_{(r)} - DSI_{(c)}$ acts as an indicator for the occurrence and intensity of rain. The different DSI variants and their proper physical interpretations are summarized in Table II.

An interesting further challenge will be the incorporation of the ice phase and its different conformations, such as snow, graupel, or hail.

ACKNOWLEDGMENTS

S.H. acknowledges the Austrian Science Fund (FWF) for the support via the Hertha Firnberg Project (Grant No. FWF: T-764) and via the SFB project "Taming Complexity in Partial Differential Equations" under Grant No. FWF: F65. This research was partially funded by the Deutsche Forschungsgemeinschaft (DFG) through Grant No. CRC 1114 "Scaling Cascades in Complex Systems" and Project Nos. 235221301, A01 "Coupling a multiscale stochastic precipitation model to large scale atmospheric flow dynamics," and C06 "Multiscale structure of atmospheric vortices."

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ARTICLE

APPENDIX A. SUMMARY OF THE DSI VARIANTS

In the following, we summarize all DSI variants and highlight the additional terms entering when moving up the hierarchy of complexity involved in the according derivations. We shall emphasize that Δ in the following does not denote the Laplacian but is used as a symbol for the deviation terms.

1. Dry air DSI(d)

For the derivations based on the dry air setting, we have the classical definition of the DSI,

$$\mathrm{DSI}_{(d)} = \frac{1}{\rho_d} \nabla \Pi_{(d)} \cdot \left(\nabla s_{(d)} \times \nabla B_{(d)} \right) = \frac{\Pi_{(d)}^2}{\rho_d} \nabla \cdot \left[\frac{1}{\Pi_{(d)}} \left(\nabla B_{(d)} \times \nabla s_{(d)} \right) \right],$$

where

$$\begin{split} s_{(d)} &= c_{pd} \ln \frac{T}{T_0} - R_d \ln \frac{p}{p_0}, \\ H_{(d)} &= c_{pd}T, \\ B_{(d)} &= \frac{1}{2} \mathbf{v}^2 + H_{(d)} + \phi, \\ \Pi_{(d)} &= \frac{\xi_a \cdot \nabla s_{(d)}}{\rho_d}. \end{split}$$

2. Moist air $DSI_{(v)}$

As a next step, water vapor is included in the derivations, leading to

$$\begin{split} \mathrm{DSI}_{(\nu)} &= \frac{\Pi_{(\nu)}^2}{\rho} \nabla \cdot \left[\frac{1}{\Pi_{(\nu)}} (\nabla B_{(\nu)} + \Lambda_{(\nu)} \nabla q_{\nu}) \times \nabla s_{(\nu)} \right] \\ &= \frac{(\Pi_{(d)} + \Delta \Pi_{(\nu)})^2}{\rho_d (1 + q_\nu)} \nabla \cdot \left[\frac{1}{\Pi_{(d)} + \Delta \Pi_{(\nu)}} (\nabla (B_{(d)} + \Delta B_{(\nu)}) + \Lambda_{(\nu)} \nabla q_{\nu}) \times \nabla (s_{(d)} + \Delta s_{(\nu)}) \right], \end{split}$$

where

$$\begin{split} s_{(v)} &= s_{(d)} + \Delta s_{(v)}, \\ \Delta s_{(v)} &= c_{pv}q_v \ln \frac{T}{T_0} - R_v q_v \ln \frac{e}{e_0}, \\ H_{(v)} &= H_{(d)} + \Delta H_{(v)}, \\ \Delta H_{(v)} &= -\frac{q_v H_{(d)}}{1 + q_v} + \frac{c_{pv} q_v T}{1 + q_v}, \\ B_{(v)} &= B_{(d)} + \Delta B_{(v)}, \\ \Delta B_{(v)} &= \Delta H_{(v)}, \\ \Pi_{(v)} &= \Pi_{(d)} + \Delta \Pi_{(v)}, \\ \Delta \Pi_{(v)} &= -\frac{q_v \Pi_{(d)}}{1 + q_v} + \frac{\xi_a \cdot \nabla \Delta s_{(v)}}{\rho_d (1 + q_v)}, \\ \Lambda_{(v)} &= \frac{1}{1 + q_v} \Big(H_{(v)} + c_{pv} T \Big(\ln \frac{T}{T_0} - 1 \Big) - R_v T \ln \frac{e}{e_0} \Big) \end{split}$$

3. Cloud water DSI(c)

The next extension amounts to the inclusion of phase changes and liquid water in the form of cloud water,

$$\begin{split} \mathrm{DSI}_{(c)} &= \frac{\Pi_{(c)}^2}{\rho} \nabla \cdot \left[\frac{1}{\Pi_{(c)}} \Big(\nabla B_{(c)} + \Lambda_{(c),1} \nabla q_{\nu} + \Lambda_{(c),2} \nabla q_c \Big) \times \nabla s_{(c)} \right] \\ &= \frac{(\Pi_{(\nu)} + \Delta \Pi_{(c)})^2}{\rho_d (1 + q_{\nu} + q_c)} \nabla \cdot \left[\frac{1}{\Pi_{(\nu)} + \Delta \Pi_{(c)}} \Big(\Big(\nabla (B_{(\nu)} + \Delta B_{(c)}) + (\Lambda_{(\nu)} + \Delta \Lambda_{(c),1}) \nabla q_{\nu} + \Lambda_{(c),2} \nabla q_c \Big) \times \nabla (s_{(\nu)} + \Delta s_{(c)}) \Big) \right], \end{split}$$

where

2

$$\begin{split} s_{(c)} &= s_{(v)} + \Delta s_{(c)}, \\ \Delta s_{(c)} &= c_l q_c \ln \frac{T}{T_0}, \\ H_{(c)} &= H_{(v)} + \Delta H_{(c)}, \\ \Delta H_{(c)} &= -\frac{q_c H_{(v)}}{1 + q_v + q_c} + \frac{c_l q_c T + L_0}{1 + q_v + q_c}, \\ B_{(c)} &= B_{(v)} + \Delta B_{(c)}, \\ \Delta B_{(c)} &= \Delta H_{(c)}, \\ \Pi_{(c)} &= \Pi_{(v)} + \Delta \Pi_{(c)}, \\ \Delta \Pi_{(c)} &= -\frac{q_c \Pi_{(v)}}{1 + q_v + q_c} + \frac{\xi_a \cdot \nabla \Delta s_{(c)}}{\rho_d (1 + q_v + q_c)}, \\ \Lambda_{(c),1} &= \Lambda_{(v)} + \Delta \Lambda_{(c),1}, \\ \Delta \Lambda_{(c),1} &= -\frac{q_c \Lambda_{(v)}}{1 + q_v + q_c} + \frac{\Delta H_{(c)}}{1 + q_v + q_c}, \\ \Lambda_{(c),2} &= \frac{1}{1 + q_v + q_c} \Big(H_{(c)} + c_l T \Big(\ln \frac{T}{T_0} - 1 \Big) \Big). \end{split}$$

4. Fallout of rain $DSI_{(r)}$

Finally, also precipitation is included in the derivation of the DSI,

$$DSI_{(r)} = \frac{\Pi_{(r)}^{2}}{\rho} \nabla \cdot \left[\frac{1}{\Pi_{(r)}} \left(\left(\nabla B_{(r)} + \Lambda_{(r),1} \nabla q_{\nu} + \Lambda_{(r),2} \nabla (q_{\varepsilon} + q_{r}) \right) \times \nabla s_{(r)} - \xi_{a} Q_{s_{(r)}} \right) \right]$$
$$= \frac{(\Pi_{(c)} + \Delta \Pi_{(r)})^{2}}{\rho_{d} (1 + q_{\nu} + q_{\varepsilon} + q_{r})} \nabla \cdot \left[\frac{1}{\Pi_{(c)} + \Delta \Pi_{(r)}} \left(\left(\nabla (B_{(c)} + \Delta B_{(r)}) + (\Lambda_{(c),1} + \Delta \Lambda_{(r),1}) \nabla q_{\nu} + \dots + (\Lambda_{(c),2} + \Delta \Lambda_{(r),2}) (\nabla q_{\varepsilon} + \nabla q_{r}) \right) \times \nabla (s_{(c)} + \Delta s_{(r)}) - \xi_{a} Q_{s_{(r)}} \right) \right],$$

where

$$\begin{split} s_{(r)} &= s_{(c)} + \Delta s_{(r)}, \\ \Delta s_{(r)} &= c_l q_r \ln \frac{T}{T_0}, \\ H_{(r)} &= H_{(c)} + \Delta H_{(r)}, \\ \Delta H_{(r)} &= -\frac{q_r H_{(c)}}{1 + q_v + q_c + q_r} + \frac{c_l q_r T}{1 + q_v + q_c + q_r}, \\ B_{(r)} &= B_{(c)} + \Delta B_{(r)}, \\ \Delta B_{(r)} &= \Delta H_{(r)}, \\ \Pi_{(r)} &= \Pi_{(c)} + \Delta \Pi_{(r)}, \\ \Delta \Pi_{(r)} &= -\frac{q_r \Pi_{(c)}}{1 + q_v + q_c + q_r} + \frac{\xi_a \cdot \nabla \Delta s_{(r)}}{\rho_d (1 + q_v + q_c + q_r)}, \\ \Lambda_{(r),1} &= \Lambda_{(c),1} + \Delta \Lambda_{(r),1}, \\ \Delta \Lambda_{(r),1} &= -\frac{q_r \Lambda_{(c),1}}{1 + q_v + q_c + q_r} + \frac{\Delta H_{(r)}}{1 + q_v + q_c + q_r}, \\ \Lambda_{(r),2} &= \Lambda_{(c),2} + \Delta \Lambda_{(r),2}, \\ \Delta \Lambda_{(r),2} &= -\frac{q_r \Lambda_{(c),2}}{1 + q_v + q_c + q_r} + \frac{\Delta H_{(r)}}{1 + q_v + q_c + q_r}, \\ Q_{s_{(r)}} &= c_l \ln \frac{T}{T_0} \frac{1}{\rho_d} \partial_z (\rho_d V_r q_r). \end{split}$$

REFERENCES

¹M. Baumgartner, R. Weigel, A. H. Harvey, F. Plöger, U. Achatz, and P. Spichtinger, "Reappraising the appropriate calculation of a common meteorological quantity: Potential temperature," Atmos. Chem. Phys. **20**, 15585–15616 (2020).

²A. Claussnitzer, P. Névir, I. Langer, E. Reimer, and U. Cubasch, "Scale-dependent analyses of precipitation forecasts and cloud properties using the dynamic state index," Meteorol. Z. 17(6), 813–825 (2008).

³W. R. Cotton, G. Bryan, and S. C. Van den Heever, Storm and Cloud Dynamics (Academic Press, 2010), Vol. 99.

⁴K. A. Emanuel, *Atmospheric Convection* (Oxford University Press on Demand, 1994).

⁵A. Gaßmann, "Deviations from a general nonlinear wind balance: Local and zonal-mean perspectives," Meteorol. Z. 23, 467–481 (2014).

⁶A. Gassmann and H.-J. Herzog, "How is local material entropy production represented in a numerical model?," Q. J. R. Meteorol. Soc. 141, 854–869 (2015).

⁷S. Hittmeir and R. Klein, "Asymptotics for moist deep convection I: Refined scalings and self-sustaining updrafts," Theor. Comput. Fluid Dyn. 32, 137–164 (2018).

⁸A. Müller and P. Névir, "Using the concept of the dynamic state index for a scale-dependent analysis of atmospheric blocking," Meteorol. Z. 28, 487–498 (2019).
⁹A. Müller, P. Névir, and R. Klein, "Scale dependent analytical investigation of the dynamic state index concerning the quasi-geostrophic theory," Math. Clim. Weather Forecast. 4(1), 1–22 (2018).

10 P. Névir, "Ertel's vorticity theorems, the particle relabelling symmetry and the energy-vorticity theory of fluid mechanics," Meteorol. Z. 13(6), 485-498 (2004).

¹¹P. Névir and M. Sommer, "Energy-vorticity theory of ideal fluid mechanics," J. Atmos. Sci. **66**(7), 2073–2084 (2009).

¹²J. Pedlosky, *Geophysical Fluid Dynamics*, 2nd ed. (Springer, Berlin, Heidelberg, New York, 1992).

¹³C. Schär, "A generalization of Bernoulli's theorem," J. Atmos. Sci. 50(10), 1437–1443 (1993).

¹⁴W. Schubert, "A generalization of Ertel's potential vorticity to a cloudy, precipitating atmosphere," Meteorol. Z. 13(6), 465-471 (2004).

¹⁵ T. Seltz, "Der dynamische zustandsindex-berechnung aus reanalysedaten und anwendung auf das El-Nino-phänomen," Ph.D. thesis, Freie Universität Berlin, 2010.
 ¹⁶ G. Vallis, *Atmospheric and Oceanic Fluid Dynamics* (Cambridge University Press, 2013).

¹⁷T. Weber and P. Névir, "Storm tracks and cyclone development using the theoretical concept of the dynamic state index (DSI)," Tellus A 60(1), 1–10 (2008).

18 C. Weijenborg, P. Friederichs, and A. Hense, "Organisation of potential vorticity on the mesoscale during deep moist convection," Tellus A 67, 25705 (2015).