dc.contributor.author
Bolognini, Davide
dc.contributor.author
Macchia, Antonio
dc.contributor.author
Strazzanti, Francesco
dc.date.accessioned
2022-05-27T08:26:14Z
dc.date.available
2022-05-27T08:26:14Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/32996
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-32720
dc.description.abstract
The cut sets of a graph are special sets of vertices whose removal disconnects the graph. They are fundamental in the study of binomial edge ideals, since they encode their minimal primary decomposition. We introduce the class of accessible graphs as the graphs with unmixed binomial edge ideal and whose cut sets form an accessible set system. We prove that the graphs whose binomial edge ideal is Cohen–Macaulay are accessible and we conjecture that the converse holds. We settle the conjecture for large classes of graphs, including chordal and traceable graphs, providing a purely combinatorial description of Cohen–Macaulayness. The key idea in the proof is to show that both properties are equivalent to a further combinatorial condition, which we call strong unmixedness.
en
dc.format.extent
32 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Binomial edge ideals
en
dc.subject
Cohen–Macaulay rings
en
dc.subject
Accessible set systems
en
dc.subject
Chordal graphs
en
dc.subject
Traceable graphs
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Cohen–Macaulay binomial edge ideals and accessible graphs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s10801-021-01088-w
dcterms.bibliographicCitation.journaltitle
Journal of Algebraic Combinatorics
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
1139
dcterms.bibliographicCitation.pageend
1170
dcterms.bibliographicCitation.volume
55
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s10801-021-01088-w
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1572-9192
refubium.resourceType.provider
WoS-Alert