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Abstract
The cut sets of a graph are special sets of vertices whose removal disconnects the
graph. They are fundamental in the study of binomial edge ideals, since they encode
their minimal primary decomposition. We introduce the class of accessible graphs as
the graphs with unmixed binomial edge ideal and whose cut sets form an accessible
set system. We prove that the graphs whose binomial edge ideal is Cohen–Macaulay
are accessible and we conjecture that the converse holds. We settle the conjecture for
large classes of graphs, including chordal and traceable graphs, providing a purely
combinatorial description of Cohen–Macaulayness. The key idea in the proof is to
show that both properties are equivalent to a further combinatorial condition, which
we call strong unmixedness.
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1 Introduction

Binomial edge ideals, introduced in 2010/11 in [13,23], are quadratic binomial ideals
associated with finite simple graphs. They are generated by certain 2-minors of a
(2 × n)-generic matrix corresponding to the edges of a graph on n vertices; more
precisely, the binomial edge ideal of a graph G is the ideal

JG = (xi y j − x j yi : {i, j} ∈ E(G)) ⊆ K [x1, . . . , xn, y1, . . . , yn],
where E(G) is the edge set ofG and K is a field. In this sense, they generalize the ideals
of 2-minors and in the last ten years gave rise to a rich and active research avenue. They
also arise in the study of conditional independence statements in Algebraic Statistics
[13, Section 4] and are a subclass of the so-called Cartwright–Sturmfels ideals [7,
Section 3].

Exploiting the combinatorics of the underlying graph, many authors have studied
algebraic and homological properties and invariants of these ideals, such as their regu-
larity [16,19,21,28,29,31], depth [3,30], local cohomology [1], universalGröbner basis
[2] and licci property [9]. In particular, their primary decomposition and unmixedness
can be characterized combinatorially. Indeed, given a graph G, the minimal prime ide-
als of JG are in bijectionwith the so-called cut sets of G, see [13, Corollary 3.9]. Recall
that a cut set is a subset S of vertices of G such that either S = ∅ or cG(S\{s}) < cG(S)

for every s ∈ S, where cG(S) denotes the number of connected components of the
graph obtained from G by removing the vertices of S. By [24, Lemma 2.5], JG is
unmixed if and only if cG(S) = |S| + c for every S ∈ C(G), where C(G) is the
collection of cut sets of G and c is the number of connected components of G.

In general, it is not easy to determine whether an ideal is Cohen–Macaulay, also due
to the limitations of symbolic computations. Therefore, it is very interesting to find
alternative descriptions of Cohen–Macaulayness. In this direction, several authors
found constructions [18,24] and described classes of graphs whose binomial edge
ideal is Cohen–Macaulay [5,8,26,27]. In this paper, we present the first attempt to find
a general combinatorial characterization of Cohen–Macaulay binomial edge ideals,
which is only based on the structure of the cut sets of a graph, providing a simpler
way to check such homological property.

In a previous paper, [5], we give a classification of bipartite graphs with Cohen–
Macaulay binomial edge ideal, providing an explicit construction in graph-theoretical
terms. In [5, Theorem 6.1], we also present a further combinatorial characterization of
Cohen–Macaulayness in terms of cut sets: ifG is bipartite, then JG is Cohen–Macaulay
if and only if

(∗) JG is unmixed and C(G) is an accessible set system, i .e., for every non-empty
S ∈ C(G) there exists s ∈ S such that S\{s} ∈ C(G).

In this paper, we call accessible a graph with property (∗). The previous equivalence
and further computational evidence motivated us to formulate the following:

Conjecture 1.1 Let G be a graph. Then, JG is Cohen–Macaulay if and only if G is
accessible.
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Atopological characterization ofCohen–Macaulayness has been recently provedby
ÀlvarezMontaner in [1], relating this algebraic property to the vanishing of the reduced
cohomology groups of a certain poset arising from the minimal prime ideals of JG .
The structure of this poset can be rather complicated even for relatively small graphs.
Moreover, from [1, Corollary 3.11], it is not clear whether the Cohen–Macaulayness of
JG depends on the field.On the contrary, Conjecture 1.1would provide a combinatorial
and field-independent characterization in terms of cut sets.

In Sect. 3, the poset introduced by Àlvarez Montaner turns out to be an important
tool to prove one implication of Conjecture 1.1:

Theorem 3.5 Let G be a graph. If JG is Cohen–Macaulay, then G is accessible.

As a consequence, we show that [4, Conjecture 1.6], about the diameter of the dual
graph of an ideal, holds for all binomial edge ideals, see Corollary 3.7.

In Sect. 4, we start a systematic study of accessible graphs and of their cut sets. In
particular, by Theorem 3.5, the properties of accessible graphs are also properties of
graphs with Cohen–Macaulay binomial edge ideal. This gives further combinatorial
ways to check whether JG is not Cohen–Macaulay for a given graph G. To state the
next result, recall that a vertex v of G is called cut vertex if the graph obtained by
removing v has more connected components than G.

Theorem 1.2 Let G be a connected accessible graph.
[Remark 4.2]: If G has no cut vertices, then it is a complete graph.
[Lemma 4.9]: If G has one cut vertex, then it is a cone over two connected accessible
graphs with fewer vertices than G.
[Theorem 4.12]: If G has at least two cut vertices, then:

(1) every non-empty cut set of G contains a cut vertex;
(2) the graph induced on the cut vertices of G is connected;
(3) every vertex of G is adjacent to a cut vertex.

In particular, these properties hold if JG is Cohen–Macaulay.

Along the way, we prove that if G = cone(v, H1� H2) and JG is Cohen–Macaulay,
then JH1 and JH2 are Cohen–Macaulay by Theorem 4.8, showing the converse of [24,
Theorem 3.8].

To study the other implication of Conjecture 1.1, we introduce the class of strongly
unmixed binomial edge ideals, see Definition 5.6. The main result of Sect. 5, Theorem
5.11, shows that strong unmixedness implies Cohen–Macaulayness. Summarizing, we
have:

JG strongly unmixed �⇒ JG Cohen–Macaulay �⇒ G accessible,

where both strong unmixedness and accessibility are purely combinatorial conditions.
By virtue of Proposition 5.13 and Corollary 5.16, proving Conjecture 1.1 boils

down to show that every non-complete accessible graph G has a cut vertex v such that
JG\{v} is unmixed, see Question 5.17.

In Sect. 6, we focus on two important classes: chordal graphs and graphs containing
a Hamiltonian path, called traceable graphs. We prove that chordal and traceable
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graphs, if accessible, have the cut vertex we are looking for. In particular, we show
that for these graphs being accessible is equivalent both to JG Cohen–Macaulay and
to JG strongly unmixed, see Theorems 6.4 and 6.8. This also shows that the Cohen–
Macaulayness of JG does not depend on the field for chordal and traceable graphs,
even if the graded Betti numbers of JG may depend on the field, as in Example 7.6.

In Corollary 6.9, we also notice that accessible bipartite graphs are traceable, thus
recovering for these graphs the equivalence between JG Cohen–Macaulay and G
accessible proved in [5, Theorem 6.1].

We conclude by discussing some open questions in Sect. 7.

2 Preliminaries

Throughout the paper, all graphs will be finite and simple, i.e., undirected graphs
with no loops nor multiple edges. Given a graph G, we denote by V (G) and E(G) its
vertex and edge set, respectively. For every vertex v of G, we denote by NG(v) = {w ∈
V (G) : {v,w} ∈ E(G)} the set of neighbors ofv inG andwe set NG [v] = NG(v)∪{v}.
Given W ⊆ V (G), the induced subgraph by W in G is the graph G[W ] with vertex
set W and whose edge set consists of the edges of G with both endpoints in W .

To simplify the notation, if S ⊆ V (G), we denote by G\S the induced subgraph
G[V (G)\S], which is the graph obtained by removing from G the vertices of S and
all the edges incident in them. In particular, G\{v} denotes the graph obtained by
removing the vertex v and all edges containing v.

A vertex v ∈ V (G) is said to be a cut vertex or cut point of G if G\{v} has more
connected components than G. Given S ⊆ V (G), we denote by cG(S) or simply c(S)

(if the graph is clear from the context) the number of connected components of G\S.
Moreover, we say that S is a cut-point set or simply cut set of G if either S = ∅ or
cG(S\{s}) < cG(S) for every s ∈ S. In particular, the cut sets of cardinality 1 are the
cut vertices of G. We denote by C(G) the collection of cut sets of G.

In this context, when we say that, given a cut set S of G, a vertex v ∈ S reconnects
some connected components G1, . . . , Gr of G\S, we mean that if we add back v to
G\S, together with all edges of G incident in v, then G1, . . . , Gr are in the same
connected component.

Cut sets are very important in the study of binomial edge ideals because they allow
to describe the minimal primary decomposition of JG , as we are going to explain.

Let G be a graph with vertex set [n] = {1, . . . , n}, K be a field and consider the
polynomial ring in 2n indeterminates R = K [x1, . . . , xn, y1, . . . , yn]. The binomial
edge ideal of G is the ideal

JG = (xi y j − x j yi : {i, j} ∈ E(G)) ⊆ R.

For every S ⊆ V (G), we set

PS(G) = (xi , yi : i ∈ S) + J
˜G1

+ · · · + J
˜Gc(S)

,
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(a) An accessible graph G

1 3 5 7

2 4 6
(b) A non-accessible graph H with JH unmixed

Fig. 1 An accessible graph G. A non-accessible graph H with JH unmixed

where G1, . . . , Gc(S) are the connected components of G\S and ˜G j is the complete
graph on the vertex set V (G j ).

By [13, Section 3], PS(G) is a prime ideal with height n − c(S) + |S|, it contains
JG and it is a minimal prime ideal of JG if and only if S is a cut set of G. Moreover,
the minimal primary decomposition of JG is JG = ∩S∈C(G) PS(G).

We recall that an ideal is (height-)unmixed if all its minimal prime ideals have the
same height. Thus, since ∅ ∈ C(G), it easily follows that JG is unmixed if and only if
cG(S) = |S|+ c for every S ∈ C(G), where c is the number of connected components
of G. In this case, dim(R/JG) = n + c.

Remark 2.1 For a graph G, C(G) = {∅} if and only if the connected components of G
are complete graphs. Moreover, if G is connected, then JG is the ideal of 2-minors of
a (2 × n)-generic matrix and, hence, Cohen–Macaulay, see [6, Corollary 2.8].

We introduce a class of graphs whose binomial edge ideal is unmixed, which will
be the main object of study in the paper.

Definition 2.2 A graph G is accessible if JG is unmixed and C(G) is an accessible
set system, i.e., for every non-empty cut set S ∈ C(G) there exists s ∈ S such that
S\{s} ∈ C(G).

Notice that this is a purely combinatorial notion, since unmixedness can also be
phrased in terms of the graph.

Example 2.3 The graph G in Fig. 1a is accessible. In fact, its cut sets are

C(G)={∅, {2}, {5}, {10}, {2, 5}, {2, 10}, {3, 10}, {4, 10},{5, 7},{5, 10},{2, 4, 5},{2, 4, 10},
{2, 5, 7},{2, 5, 10}, {4, 5, 10}, {5, 7, 10}, {2, 4, 5, 7}, {2, 4, 5, 10}, {2, 5, 7, 10},
{3, 5, 7, 10}, {4, 5, 7, 10}, {2, 4, 5, 7, 10}}

and it is easy to check that C(G) is an accessible set system.
On the other hand, the graph H in Fig. 1b is not accessible, even if JH is unmixed. In

fact, the cut sets of H are C(H) = {∅, {2}, {6}, {2, 6}, {3, 5}, {2, 4, 6}}. In particular,
{3, 5} ∈ C(H), but neither 3 nor 5 is a cut vertex of H . More in general, the graphs of
[5, Example 2.2], which include the graph H , are not accessible, even if their binomial
edge ideal is unmixed.
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When needed, we may assume that the graphs are connected, by the following
remark.

Remark 2.4 Given a graph G with connected components G1, . . . , Gc, the following
properties hold.

(i) C(G) = {S1 ∪ · · · ∪ Sc : Si ∈ C(Gi )} by definition. Hence, if S is a cut set of G,
then S ∩ V (Gi ) ∈ C(Gi ) for every i .

(ii) JG is unmixed if and only if JGi is unmixed for every i = 1, . . . , c. This follows
by (i).

(iii) G is accessible if and only if Gi is accessible for every i = 1, . . . , c. It follows
by (i) and (ii).

(iv) JG is Cohen–Macaulay if and only JGi is Cohen–Macaulay for every i =
1, . . . , c. In fact, R/JG ∼= R1/JG1 ⊗ · · · ⊗ Rc/JGc , where Ri = K [x j , y j :
j ∈ V (Gi )].

3 A necessary condition for the Cohen–Macaulayness of JG

In this section, we are going to prove that if JG is Cohen–Macaulay, then G is acces-
sible, by using a certain poset associated with JG , introduced by Àlvarez Montaner in
[1, Definition 3.3]. We recall here its construction.

Let I be a radical ideal of a commutative Noetherian ring containing a field K .
We define PI to be the set of all possible sums of ideals in the minimal primary
decomposition of I , i.e.,

PI = {Ii1 + · · · + Iis : Ii j primary component of I , s > 0}.

We note that every ideal in PI contains I .

Definition 3.1 Let G be a graph on the vertex set [n] and JG be the binomial edge
ideal of G in the polynomial ring R = K [xi , yi : i ∈ [n]]. We define the poset QJG

associated with JG whose elements are given by the following procedure:

1. set I := JG ;
2. add to QJG the prime ideals in PI ;
3. for every non-prime ideal J ∈ PI , set I := J and return to Step 2.

We order the elements ofQJG by reverse inclusion and then add a top element 1QJG
to QJG , greater than all the other elements.

We note that QJG is finite because R is Noetherian and every ideal of PI

contains I .

Example 3.2 Let G be the graph in Fig. 2 and denote by fi j = xi y j − x j yi the
generators of JG . Hence, JG = ( f12, f23, f24, f34, f45) and its primary decomposition
is JG = P0 ∩ P1 ∩ P2 ∩ P3, where
Among the sums of the minimal primes of JG , the only non-prime ideal is

P1 + P2 = P1 + P2 + P3 = (x2, x4, y2, y4, f13, f35),
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Fig. 2 The graph G
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Fig. 3 The poset QJG 1QJG

P3P2P1P0

P2 + P3P1 + P3P0 + P2P0 + P1

Q1Q0

Q0 +Q1

and its primary decomposition is P1 + P2 = Q0 ∩ Q1, where

Q0 = (x2, x4, y2, y4, f13, f15, f35) and Q1 = (x2, x3, x4, y2, y3, y4).

Moreover, Q0 = P0 + P3 = P0 + P1 + P2 = P0 + P1 + P3 = P0 + P2 + P3 =
P0 + P1 + P2 + P3 and Q0 + Q1 = (x2, x3, x4, y2, y3, y4, f15) are prime ideals. The
poset QJG is depicted in Fig. 3.

Remark 3.3 By construction, every element I = 1QJG
of the poset QJG contains at

least a prime ideal PS(G) for some S ∈ C(G) because I ∈ PJ for some ideal J ∈ QJG

and every ideal of PJ contains J . Moreover, if PS(G) � I , then I contains another
prime ideal PU (G) with U ∈ C(G)\{S}.

Notice that for every Iq ∈ QJG we have

Iq = PS(H) = (xi , yi : i ∈ S) + J
˜H1

+ · · · + J
˜Hcq

,

for some graph H on the vertex set [n], where S ⊆ [n], H1, . . . , Hcq are the connected
components of H\S and ˜Hi is the complete graph on the vertices of Hi . In particular,
the poset QJG is well-defined because all its elements are radical ideals. We set

dq = dim(R/Iq) = 2n − 2|S| −
cq

∑

i=1

(|Hi | − 1) = n − |S| + cq .

Recall that if Iq = 1QJG
, then an open interval of the form (Ip, Iq) � QJG is the set

{Ir ∈ QJG : Iq � Ir � Ip} whereas an open interval of the form (Ip, 1QJG
) is the set

{Ir ∈ QJG : Ir � Ip}.
In [1], Álvarez Montaner proves the following topological characterization of

Cohen–Macaulay binomial edge ideals, which resembles Reisner’s criterion for
Cohen–Macaulay squarefree monomial ideals [25].
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Theorem 3.4 ( [1, Corollary 3.1]) Let G be a graph. The following conditions are
equivalent:

(i) JG is Cohen–Macaulay;
(ii) dimK ˜Hr−dq−1((Iq , 1QJG

); K ) = 0 for all r = dim(R/JG) and all Iq ∈ QJG .

Here, ˜Hi ((Iq , 1QJG
); K ) denotes the i-th reduced cohomology group of the interval

(Iq , 1QJG
) over the field K (for more details, see [33, Section 1.5]). We are now ready

to prove the main result of this section.

Theorem 3.5 Let G be a graph. If JG is Cohen–Macaulay, then G is accessible.

Proof In this proof, we only deal with cut sets of the graph G; hence, we simply write
PS in place of PS(G) for every S ∈ C(G).

By Remark 2.4, we may assume G connected. By contradiction, suppose that G is
not accessible. Since JG is unmixed, there exists a non-empty cut set S of G such that
S\{s} /∈ C(G) for every s ∈ S. Consider the finite set

A = {PS + PU : U ∈ C(G), U � S},

which is not empty because PS + P∅ ∈ A. Let PS + PT be a minimal element of A
with respect to the inclusion. Notice that

PS + PT = (xi , yi : i ∈ S) + J
˜H1

+ · · · + J
˜Hc

.

where H1, . . . , Hc are the connected components of G\T from which we remove the
elements of S\T and c = |T | + 1 since JG is unmixed. In particular, PS + PT is a
prime ideal, and hence, it is an element of the poset QJG .

Claim: There are no ideals I in QJG such that PS � I � PS + PT , i.e., the open
interval (PS + PT , PS) is empty.

Suppose by contradiction that the claim is not true. Since PS � I , by Remark 3.3
such an ideal I has to contain at least another prime ideal of the form PU for some
U ∈ C(G) and U = S. We distinguish between two cases.

1) If U � S, then there exists u ∈ U\S and xu, yu ∈ PU ⊆ I � PS + PT . On the
other hand, xu, yu /∈ PS + PT yields a contradiction.

2) If U � S, then PS + PU ∈ A. It follows that PS + PU ⊆ I � PS + PT which
contradicts the minimality of PS + PT in A.

Thus, the claim holds and hence, the point PS is isolated in the open interval
(PS + PT , 1QJG

). It follows that the open interval (PS + PT , 1QJG
) consists of at

least two connected components, one of which is the isolated point PS and another
component containing PT . Hence,

dimK ˜H0((PS + PT , 1QJG
); K ) > 0

because dimK ˜H0(P; K ) equals the number of connected components of the poset P
minus 1 (see [12, Proposition 2.7 and page 110]).
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Fig. 4 The graph G
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Now, set d = dim(R/(PS + PT )) = n − |S| + c = n − |S| + |T | + 1, where
n = |V (G)|. Since G is not accessible, we have |T | < |S| − 1; thus, d + 1 =
n −|S|+ |T |+2 < n −1+2 = n +1 = dim(R/JG), where the last equality follows
from the unmixedness of JG . If r = d + 1, this implies that

dimK ˜Hr−d−1((PS + PT , 1QJG
); K ) = dimK ˜H0((PS + PT , 1QJG

); K ) > 0.

By Theorem 3.4, it follows that JG is not Cohen–Macaulay, a contradiction. ��
Theorem 3.5 has many consequences on the combinatorics of the graphs with

Cohen–Macaulay binomial edge ideal, which we will explore in Sect. 4. Here, we
want to show how Theorem 3.5 is useful to prove that a binomial edge ideal is not
Cohen–Macaulay.

Example 3.6 In [26, Examples 2 and 3] and [27, Figure 8], Rinaldo considers the graph
G in Fig. 4 and the graph H in Fig. 1b, showing by symbolic computation that their
binomial edge ideals are unmixed and not Cohen–Macaulay. This last fact can be
easily shown by Theorem 3.5 just by looking at the cut sets of the two graphs:

C(G) ={∅, {2}, {6}, {7}, {2, 6}, {2, 7}, {3, 5}, {3, 7}, {5, 6}, {6, 7}, {2, 3, 7},
{2, 4, 6}, {2, 4, 7}, {2, 5, 6}, {2, 6, 7}, {3, 5, 6}, {3, 5, 7}, {2, 4, 6, 7}},

C(H) ={∅, {2}, {6}, {2, 6}, {3, 5}, {2, 4, 6}}.

In both graphs, {3, 5} is a cut set, but {3} and {5} are not cut vertices and, hence, G and
H are not accessible. Thus, JG and JH are not Cohen–Macaulay. Notice that since H
is bipartite, the non-Cohen–Macaulayness of JH is also a consequence of [5, Example
5.4].

Another interesting application is that [4, Conjecture 1.6] of Benedetti and Varbaro
on the diameter of the dual graph holds for all binomial edge ideals, extending [5,
Corollary 6.3]. To explain this, we recall the setting.

Given an ideal I in a polynomial ring R = K [x1, . . . , xn], with minimal primes
p1, . . . , pr , the dual graph, D(I ), of I is the graph with vertex set {p1, . . . , pr } and
edge set

{{pi , p j } : ht(pi + p j ) − 1 = ht(pi ) = ht(p j ) = ht(I )}.

The notion of dual graph is implicit in the proof ofHartshorne Connectedness Theorem
[11], which implies that D(I ) is connected if R/I satisfies the Serre’s condition (S2)
and, in particular, if I is Cohen–Macaulay.
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In [5, Theorem 5.2], we describe the dual graph of an unmixed binomial edge ideal
JG in terms of the underlying graph G. Moreover, if G is bipartite, we prove that JG

Cohen–Macaulay is equivalent to D(JG) connected, which in turn is equivalent to G
accessible.

Recall that the diameter, diam(G), of a graph G is the maximal distance between
two of its vertices and a homogeneous ideal is called Hirsch if diam(D(I )) ≤ ht(I ).
In [4, Conjecture 1.6], Benedetti and Varbaro conjecture that every Cohen–Macaulay
homogeneous ideal generated in degree two is Hirsch. In [5, Corollary 6.3], we essen-
tially prove that JG is Hirsch if G is accessible. Hence, with the same argument,
Theorem 3.5 immediately implies the following result:

Corollary 3.7 If JG is Cohen–Macaulay, then it is Hirsch. In other words, [4, Conjec-
ture 1.6] is true for all binomial edge ideals.

4 Accessible graphs

In this section, we focus on the combinatorial properties of accessible graphs. The
purpose is twofold. First, by Theorem 3.5 these turn out to be combinatorial properties
of the graphs whose binomial edge ideal is Cohen–Macaulay. Second, the results
proved in this section will be of crucial importance in Sect. 6, where we prove the
converse of Theorem 3.5 for chordal and traceable graphs.

4.1 Combinatorial properties of accessible graphs

In [3, Proposition 3.10], it is proved that if G is connected and JG satisfies the Serre’s
condition (S2), then either G is complete or it has at least one cut vertex. In particular,
this holds for Cohen–Macaulay binomial edge ideals. In the next lemma, we prove
that a stronger property holds if G is accessible and hence, a fortiori, if JG is Cohen–
Macaulay (by Theorem 3.5).

Lemma 4.1 Let G be an accessible graph. Then, every non-empty cut set of G contains
a cut vertex.

Proof Let S ∈ C(G), S = ∅. We proceed by induction on the cardinality of |S|. If
|S| = 1, the claim follows. Otherwise, since G is accessible, there exists s ∈ S such
that S\{s} ∈ C(G). By induction there exists a cut vertex v ∈ S\{s} and the same
holds for S. ��
Remark 4.2 By Lemma 4.1, it follows that if a graph G is accessible and has no cut
vertices, then the only cut set of G is the empty set and the connected components of
G are complete by Remark 2.1.

Example 4.3 Theconverse ofLemma4.1 is not true in general. For instance, letG be the
graph in Fig. 5 whose cut sets are C(G) = {∅, {7}, {8}, {7, 8}, {6, 8, 9}, {7, 8, 9}, {6,
7, 8, 9}}. Notice that every non-empty cut set contains either 7 or 8, which are the cut
vertices of G, but removing any vertex from {6, 8, 9} does not produce a cut set. We
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Fig. 5 A graph G with a cut
vertex in each non-empty cut set
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also notice that in this case JG is unmixed and the dual graph of JG is connected, but
G is not accessible and, in particular, JG is not Cohen–Macaulay.

In the next section, we will deal with graphs obtained by completing the neighbor-
hood of a vertex. More precisely, we recall the following definition:

Definition 4.4 Let G be a graph and let v be a vertex of G. We denote by Gv the graph
obtained by connecting any two neighbors of v, i.e.,

V (Gv) = V (G) and E(Gv) = E(G) ∪ {{u, w} : u, w ∈ NG(v), u = w}.

Several properties of G behave well with respect to completing the neighborhood
of a vertex, including being accessible.

Lemma 4.5 Let v be a vertex of a graph G. Then, the following properties hold:

(1) C(Gv) = {S ∈ C(G) : v /∈ S};
(2) if JG is unmixed, then JGv is unmixed;
(3) if G is accessible, then Gv is accessible.

Proof Notice that for every W ⊆ V (G) with v /∈ W we have

cG(W ) = cGv (W ).

(1) Let S ∈ C(G) and v /∈ S. Then, for every w ∈ S, cGv (S\{w}) = cG(S\{w}) <

cG(S) = cGv (S). Conversely, let S ∈ C(Gv). Hence, v /∈ S since v is a free vertex of
Gv (see [24, Proposition 2.1]). Thus, for every w ∈ S, cG(S\{w}) = cGv (S\{w}) <

cGv (S) = cG(S).
(2) and (3) follow from (1) and the formula above. ��
Example 4.6 The converse of (2) and (3) in Lemma 4.5 does not hold. In fact, let
G be the graph in Fig. 6a and v = 3. Then, the graph Gv has edge set E(Gv) =
E(G) ∪ {{2, 4}}, see Fig. 6b. Notice that C(G) = {∅,{2},{2, 4},{3, 5}} and C(Gv) =
{∅,{2},{2, 4}}. In this case, Gv is accessible, but JG is not unmixed and, hence, G is
not accessible. In this case, JGv is also Cohen–Macaulay.

Another useful operation is the cone from a new vertex over a graph.

Definition 4.7 Let G be a graph and let v /∈ V (G). The cone of v on G, denoted by
cone(v, G) is the graph with vertex set V (G) ∪ {v} and edge set E(G) ∪ {{u, v} : u ∈
V (G)}.
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Fig. 6 The graph G. The graph
G3
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(b) The graph G3

Some properties of binomial edge ideals of cones are studied in [24]. Here, we
show that the cone over two disjoint graphs preserves unmixedness, accessibility and
Cohen–Macaulayness, proving, in particular, the converse of [24, Theorem 3.8].

Theorem 4.8 Let H1 and H2 be connected graphs, H = H1 � H2 and let G =
cone(v, H). Then,

(1) C(G) = {∅} ∪ {T1 � T2 � {v} : Ti ∈ C(Hi )};
(2) JH1 and JH2 are unmixed if and only if JG is unmixed;
(3) H1 and H2 are accessible if and only if G is accessible;
(4) JH1 and JH2 are Cohen–Macaulay if and only if JG is Cohen–Macaulay.

Proof (1) and (2) are proved in [24, Lemma 3.5] and [24, Corollary 3.7], respectively.

(3) We first assume that H1, H2 are accessible. Let T1 � T2 � {v} ∈ C(G), with
Ti ∈ C(Hi ) for i = 1, 2 and, without loss of generality, assume that T1 = ∅. By
assumption, there exists w ∈ T1 such that T1\{w} ∈ C(H1), thus (T1\{w}) � T2 �
{v} ∈ C(G). Conversely, suppose that G is accessible. Let T1 ∈ C(H1)\{∅}, then
T = T1�{v} ∈ C(G). By assumption, there existsw ∈ T such thatT \{w} ∈ C(G).
Since |T | ≥ 2 and by (1), it follows that w = v, hence w ∈ T1. We conclude that
T1\{w} ∈ C(H1).

(4) If JH1 and JH2 areCohen–Macaulay, then JG isCohen–Macaulay by [24, Theorem
3.8]. Conversely, assume JG Cohen–Macaulay. Set |V (H)| = n and R, RH , RHi

be the polynomial rings corresponding, respectively, to G, H , Hi , for i = 1, 2.
Then, dim(R/JG) = depth(R/JG) = |V (G)| + 1 = n + 2. By [24, Lemma 3.6],
dim(R/JG) = max{dim(RH1/JH1) + dim(RH2/JH2), n + 2}. Thus,

dim(RH /JH ) = dim(RH1/JH1) + dim(RH2/JH2) ≤ n + 2.

Moreover, by [20, Theorem 3.9], we have depth(R/JG) = min{depth(RH /JH ),

n + 2}. Thus,

depth(RH /JH ) ≥ n + 2.

We conclude that depth(RH /JH ) = dim(RH /JH ) = n + 2, hence JH is Cohen–
Macaulay. By Remark 2.4 (iv), this is equivalent to have JH1 and JH2 Cohen–
Macaulay. ��

We are interested in the cone operation because an accessible graph containing
exactly a cut vertex is a cone.
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Lemma 4.9 Let G be a connected graph with exactly one cut vertex v and let H1 and H2
be the connected components of G\{v}. If G is accessible, then G = cone(v, H1� H2)

and H1, H2 are accessible. Moreover, if JG is Cohen–Macaulay, then also JH1 and
JH2 are Cohen–Macaulay.

Proof By Lemma 4.1 all non-empty cut sets of G contain v. Then, Proposition 4.5 (1)
implies that C(Gv) = {∅} and this means that Gv is a complete graph by Remark 2.1.
Hence, G = cone(v, H1 � H2). It is now enough to apply Theorem 4.8. ��

We now explore some structural properties of accessible graphs.

Proposition 4.10 Let G be a connected graph with k cut vertices, v1, . . . , vk . If G is
accessible, then the induced subgraph G[{v1, . . . , vk}] is connected.

Proof We proceed by induction on k ≥ 1. If k = 1, the claim is trivial. Let k > 1,
set H0 = Gvk , and Hi = (Hi−1)vi for i = 1, . . . , k − 1. We notice that for every
i = 0, . . . , k − 1, Hi has exactly k − 1 − i cut vertices, vi+1, . . . , vk−1, and is
accessible by Lemma 4.5 (3). By induction, the induced subgraph H0[{v1, . . . , vk−1}]
is connected and it is enough to show that vk is adjacent to some vi in H0. Since vk−1
is the only cut vertex of Hk−2, by Lemma 4.9, vk−1 is adjacent to vk in Hk−2. Hence,
either vk is adjacent to vk−1 in H0 or it is adjacent to some other cut vertex vi , with
1 ≤ i < k − 1, in H0. ��
Proposition 4.11 Let G be a non-complete connected graph and suppose that every
non-empty cut set of G contains a cut vertex. Then, every vertex of G that is not a cut
vertex is adjacent to a cut vertex.

Proof Since G is not complete, by Remark 2.1 it has some non-empty cut sets and,
hence, it has at least one cut vertex by assumption. Assume that there exists a vertex
w of G which is not a cut vertex and is not adjacent to any cut vertex. Let v1, . . . , vr

be the cut vertices of G for some r ≥ 1. Define N = NG[v1]∪ NG [v2]∪ · · ·∪ NG [vr ]
and N ′ = {v ∈ N : NG(v) � N } ⊆ (N\{v1, . . . , vr }). Therefore, every v ∈ N ′ is
adjacent to some x /∈ N and to some y ∈ {v1, . . . , vr }, and by construction x and y
belong to two different connected components of G\N ′. Thus, N ′ is a cut set of G.
Moreover, N ′ is not empty since otherwise N = V (G) against w ∈ V (G)\N . By
construction, N ′ does not contain any cut vertex, and this contradicts the assumption.

��
Let G be a connected and accessible graph. If G has no cut vertices, it is a complete

graph by Remark 4.2. If G has one cut vertex, it is a cone over an accessible graph
with fewer vertices by Lemma 4.9. The next statement summarizes some properties
when G has at least two cut vertices.

Theorem 4.12 Let G be a connected accessible graph with at least two cut vertices.
Then,

(1) every non-empty cut set of G contains a cut vertex;
(2) the graph induced on the cut vertices of G is connected;
(3) every vertex of G is adjacent to a cut vertex.
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In particular, these properties hold if JG is Cohen–Macaulay.

Proof (1) is Lemma 4.1, (2) is Proposition 4.10, whereas (3) follows by (2) and
Proposition 4.11. The last part of the claim follows by Theorem 3.5. ��
Remark 4.13 Notice that properties (1), (2) and (3) in Theorem 4.12 are only necessary
but not sufficient for G to be accessible. In fact, the graph G in Example 4.3 satisfies
the above three properties but G is not accessible.

4.2 Cut sets of accessible graphs

We now study the structure of the cut sets of accessible graphs. First we provide new
combinatorial interpretations of accessibility. We start with a preliminary result.

Lemma 4.14 Let G be a graph with JG unmixed, S be a cut set of G and s ∈ S. Then,
S\{s} is a cut set of G if and only if s reconnects exactly two connected components
of G\S.

Proof Let c be the number of connected components of G and assume that S\{s} ∈
C(G). Since JG is unmixed, cG(S) = |S| + c and cG(S\{s}) = |S| − 1 + c; hence, s
reconnects exactly two connected components of G\S.

Conversely, let G1, . . . , Gr+c be the connected components of G\S and assume
that s reconnects only G1 and G2. Let us consider the set

Z = {z ∈ S : z is not adjacent to any vertex ofG3 ∪ · · · ∪ Gr+c},

which contains s. Then, T = S\Z is a cut set of G and the connected components of
G\T are G[V (G1 ∪ G2) ∪ Z ], G3, . . . , Gr+c. The unmixedness of JG implies that
|S\Z | = r − 1; then, Z = {s} and S\{s} is a cut set of G. ��
Corollary 4.15 Let G be a graph. The following conditions are equivalent:

(1) G is accessible;
(2) JG is unmixed and it is possible to order every S ∈ C(G) in such a way that

S = {s1, . . . , sr } and {s1, . . . , si } ∈ C(G) for every i = 1, . . . , r;
(3) It is possible to order every S ∈ C(G) in such a way that S = {s1, . . . , sr } and

cG({s1, . . . , si }) = cG({s1, . . . , si−1}) + 1 for every i = 1, . . . , r .

Proof The equivalence between (1) and (2) follows by the definition of accessible
graph. Let S be a cut set of G with cardinality r and let c be the number of the
connected components of G. We first notice that (3) implies the unmixedness of
JG : indeed, cG(S) = cG({s1, . . . , sr−1}) + 1 = cG({s1, . . . , sr−2}) + 2 = · · · =
cG(∅) + r = c + |S|. Now, the equivalence between (2) and (3) is a consequence of
Lemma 4.14. ��

Given a cut set S of an accessible graph G, by Corollary 4.15 we know that there
exists an order of the elements of S = {s1, . . . , sr } such that {s1, . . . , si } is a cut set
of G for every i = 1, . . . , r , but in general we do not have control on how this order
can be chosen. The following results of this section allow to fill this gap.
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Fig. 7 The graph G
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Lemma 4.16 Let G be a graph with JG unmixed and let S be a cut set of G. If every
element of S is a cut vertex of G, then every subset of S is a cut set of G.

Proof Wemay assume thatG is connected byRemark 2.4 andwe proceed by induction
on |S| = r . If r ≤ 2, the claim holds; hence, we fix r ≥ 3. It is enough to show that
all subsets of S with cardinality r − 1 are cut sets. Thus, assume by contradiction that
there exists s ∈ S such that S\{s} is not a cut set of G and let t ∈ S\{s} such that
cG(S\{s}) = cG(S\{s, t}). Let G1, . . . , Gr+1 be the connected components of G\S
and assume that s reconnects exactly the components G1, . . . , G p for some p ≥ 2.
Since cG(S\{s}) = cG(S\{s, t}) and t reconnects at least two connected components
of G\S, the vertex t is not adjacent to vertices of G p+1∪· · ·∪Gr+1 in G\S. Consider
the set

Z = {z ∈ S : z is not adjacent to vertices of G p+1 ∪ · · · ∪ Gr+1}.

Clearly s, t ∈ Z and T = S\Z ∈ C(G) by construction.
Notice that G1, . . . , G p are in the same connected component of G\{t} because

s is adjacent to vertices of each of G1, . . . , G p. Since t is a cut vertex of G, there
exists a vertex u ∈ S, which is adjacent to t and which is not adjacent to any vertex
of G1 ∪ · · · ∪ G p. Moreover, u reconnects at least two connected components of
G\S among G p+1, . . . , Gr+1, say G p+1 and G p+2. In particular, u ∈ T and, thus,
T \{u} ∈ C(G) by induction. On the other hand, u reconnects at least G p+1, G p+2 and
the connected component containing t in G\T (which is G[V (G1 ∪ · · · ∪ G p) ∪ Z ]).
Thus, Lemma 4.14 yields a contradiction. ��
Example 4.17 Lemma 4.16 does not hold if we do not require JG unmixed. In fact, let
G be the graph in Fig. 7. Clearly, JG is not unmixed, since cG({6}) = 3 = |{6}| + 1.
We notice that 2, 4, 6 are cut vertices of G and {2, 4, 6} ∈ C(G), but {4, 6} /∈ C(G)

since cG({4, 6}) = cG({6}).
Proposition 4.18 Let G be a graph and S = {v1, . . . , vh, w1, . . . , wk} ∈ C(G), where
k ≥ 1, v1, . . . , vh are cut vertices of G and w1, . . . , wk are not cut vertices of G. If G
is accessible, then S\{wi } ∈ C(G) for some i ∈ {1, . . . , k}.
Proof We may assume that G is connected by Remark 2.4 and h ≥ 1 by Lemma 4.1.
We proceed by induction on the number of cut vertices in S, h ≥ 1. If h = 1 the
claim follows by the definition of accessible graph and by Lemma 4.1. Hence, assume
h > 1. Let G1, . . . , Gh+k+1 be the connected components of G\S and suppose by
contradiction that S\{wi } /∈ C(G) for i = 1, . . . , k.

Since G is accessible, there exists vi ∈ S, say v1, such that S\{v1} ∈ C(G). By
induction, we may assume without loss of generality that S\{v1, w1} ∈ C(G).
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By Lemma 4.14, v1 reconnects exactly two components of G\S, say G1 and G2.
Since S\{v1, w1} ∈ C(G), w1 reconnects two components of G\(S\{v1}). If it only
reconnects Gi1 and Gi2 with i1, i2 ≥ 3, then it reconnects exactly two connected
components also in G\S and, then, S\{w1} would be a cut set. Thus, w1 is adjacent to
some vertices of G1, of G2, and of another component, say G3. This implies that the
connected components of G\(S\{v1, w1}) are H = G[V (G1 ∪ G2 ∪ G3) ∪ {v1, w1}]
and G4, . . . , Gh+k+1.

If k > 1, by induction there exists a vertex w j ∈ S, say w2, such that
S\{v1, w1, w2} ∈ C(G). As before,w2 is adjacent to some vertex of G1∪G2∪G3 and
of another Gi , say G4. Iterating this process, we obtain that T = S\{v1, w1, . . . , wk}
is a cut set of G and, up to relabeling the G j ’s, the connected components of
G\T are H ′ = G[V (G1 ∪ G2 ∪ G3 ∪ G4 ∪ · · · ∪ Gk+2) ∪ {v1, w1, . . . , wk}] and
Gk+3, . . . , Gh+k+1.

By construction, H ′\{v1} is connected. On the other hand, v1 is a cut vertex of G;
thus, v1 is adjacent to some vr with r ∈ {2, . . . , h}, where vr is not adjacent to vertices
of H ′\{v1}, otherwise removing v1 from G would not disconnect G. Moreover, since
T consists only of cut vertices, Lemma 4.16 implies that also T \{vr } ∈ C(G) and, thus,
vr reconnects exactly two connected components of G\T by Lemma 4.14. Therefore,
in G\T the vertex vr reconnects H ′ to exactly one other connected component Gq

with k + 3 ≤ q ≤ h + k + 1. Consequently, since vr is not adjacent to any vertex of
H ′\{v1}, if we add back vr to G\S, we have that vr is adjacent only to some vertex of
Gq and, hence, cG(S) = cG(S\{vr }), which is a contradiction. ��

Example 4.19 Let G be the graph in Fig. 1a. In Example 2.3, we saw that G is accessi-
ble. Let us consider the cut set S = {2, 5, 10, 4, 7}, where 2, 5, 10 are cut vertices and
4, 7 are not cut vertices of G. Since G is accessible, by Proposition 4.18, we can get a
new cut set by removing a non-cut vertex from S: indeed T = S\{7} = {2, 5, 10, 4} ∈
C(G) and, applying again the same result, we still get a cut set by removing the only
non-cut vertex from T , i.e., U = T \{4} = {2, 5, 10} ∈ C(G). Now, U only consists
of cut vertices and by Lemma 4.16, every subset of U is a cut set of G.

5 Strongly unmixed binomial edge ideals

In Sect. 3, we saw that the accessibility of G is necessary for the Cohen–Macaulayness
of JG . In order to study the remaining implication of Conjecture 1.1, we present a new
combinatorial condition, called strong unmixedness, which turns out to be sufficient
for Cohen–Macaulayness. In the next section, we are going to show that for large
classes of graphs, being accessible is equivalent to the strong unmixedness of the
binomial edge ideal, thus proving the conjecture for those graphs.

Let G be a graph and let v be a vertex of G. We can decompose JG as JG = A ∩ B,
where

A =
⋂

S∈C(G)
v /∈S

PS(G) and B =
⋂

S∈C(G)
v∈S

PS(G).
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Since JG = A ∩ B, we have the following short exact sequence:

0 −→ R/JG −→ R/A ⊕ R/B −→ R/(A + B) −→ 0. (�)

By Lemma 4.5 (1) it is clear that A = JGv . The above short exact sequence has
been used in other papers about binomial edge ideals; however, the structure of B and
A + B is not known in general. Our next goal is to describe these two ideals when v

is a cut vertex of G and JG\{v} is unmixed.

Notation 5.1 Let v be a cut vertex of G and H1 a connected component of G\{v}.
With abuse of notation, we denote by NH1(v) the set {w ∈ V (H1) : {v,w} ∈ E(G)}.
Proposition 5.2 Let v be a cut vertex of a connected graph G and assume that JG

is unmixed. Let H1 and H2 denote the connected components of H = G\{v}. The
following statements are equivalent:

(1) JH is unmixed;
(2) if S ∈ C(H), then NH1(v) � S and NH2(v) � S;
(3) C(H) = {S ⊆ V (H) : S ∪ {v} ∈ C(G)}.

If the above conditions hold, then the ideals in the sequence (�) are B = (xv, yv)+
JG\{v} and A + B = (xv, yv) + JGv\{v}.

Proof (1) ⇒ (2): Assume by contradiction that there exists S ∈ C(H) such that
NH1(v) ⊆ S. In particular, S′ = S∩V (H1) is a cut set of H by Remark 2.4. Moreover,
S′ is also a cut set of G because NH1(v) ⊆ S′. Since JG and JH are unmixed and H
has two connected components, we have

|S′| + 1 = cG(S′) = cH (S′) = |S′| + 2,

which is a contradiction.
(2) ⇒ (3): It is clear that {S ⊆ V (H) : S ∪ {v} ∈ C(G)} ⊆ C(H). Conversely, let S
be a cut set of H . Since H\S = G\(S ∪ {v}) for every s ∈ S, we have

cG((S ∪ {v})\{s}) = cH (S\{s}) < cH (S) = cG(S ∪ {v}).

Moreover, cG(S) < cG(S ∪ {v}) because NH1(v) � S and NH2(v) � S. Thus,
S ∪ {v} ∈ C(G).
(3) ⇒ (1): Since H\S = G\(S ∪ {v}) for every S ∈ C(H), the claim follows by the
unmixedness of JG .

The last part of the statement is an easy consequence of the definition of B and of
the fact that A = JGv . ��
Example 5.3 If G is a connected graph with JG unmixed and v is a cut vertex of G, it
is not always true that JG\{v} is unmixed. For example, given the graph G in Fig. 8a
one can check that JG , JG\{2} and JG\{8} are unmixed, but JG\{7} is not unmixed. In
fact, {3, 4, 8} ∈ C(G\{7}) and cG\{7}({3, 4, 8}) = 4 = |{3, 4, 8}| + 2.
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(a) A graph G with JG\{7} not unmixed

1 3 5 7

2 4 6
(b) A graph F with JF\{v} not unmixed for every
cut vertex v

Fig. 8 A graph G with JG\{7} not unmixed A graph F with JF\{v} not unmixed for every cut vertex v

It can also be that no cut vertex works. Let F be the graph in Fig. 8b, whose cut
vertices are 2 and 6. By [5, Example 2.2], JF is unmixed, but JF\{2} and JF\{6} are
not unmixed since cF\{2}({3, 5}) = cF\{6}({3, 5}) = 3 = |{3, 5}| + 2.

Notice that in these cases, when JG\{v} is not unmixed, B does not have the form
(xv, yv) + JG\{v} (see Proposition 5.2).

Remark 5.4 Let v be a cut vertex of G and let H1 be a connected component of
G\{v}. If there exists a cut set S of G\{v} containing NH1(v), then NH1(v) is a
cut set of G. Indeed, every w ∈ NH1(v) is adjacent to v and to some vertices of
V (H1)\S ⊆ V (H1)\NH1(v), which is not in the same connected component of v in
G\NH1(v).

In light of Proposition 5.2, we now describe the cut sets of Gv\{v}.
Lemma 5.5 Let G be a connected graph with JG unmixed and let v be a cut vertex
such that JG\{v} is unmixed. Then,

C(Gv\{v}) = C(Gv)\{S ∈ C(Gv) : NG(v) ⊆ S}.

In particular, JGv\{v} is unmixed.

Proof Let S ∈ C(Gv\{v}). It is clear that S ∈ C(Gv) because v is a free vertex of Gv ,
see [24, Proposition 2.1]. IfC1, C2, . . . , Cr are the connected components of G\S and
v ∈ C1, the connected components of Gv\({v} ∪ S) are (C1)v\{v}, C2, . . . , Cr , with
(C1)v\{v} possibly empty. Suppose by contradiction that NG(v) ⊆ S. In this case
(C1)v\{v} = ∅ and the connected components of Gv\({v} ∪ S) and G\({v} ∪ S) are
C2, . . . , Cr . Clearly, S is also a cut set of G\{v} and, if H1 and H2 are the connected
components of G\{v}, S is a cut set of G\{v} containing NH1(v) and NH2(v). This
contradicts Proposition 5.2 because JG\{v} is unmixed.

Conversely, let S ∈ C(Gv), i.e., S ∈ C(G) and v /∈ S byLemma4.5 (1), and suppose
that NG(v) � S. Hence, there exists w ∈ NG(v)\S in the connected component
(C1)v of Gv\S. Let x ∈ S be a vertex adjacent to v that reconnects (C1)v to another
component D of Gv\S. Then, x is adjacent to w in Gv\{v} and if we add back
x to (Gv\{v})\S, it reconnects (C1)v\{v} to D. This shows that cGv\{v}(S\{x}) <

cGv\{v}(S) for every x ∈ S, hence S ∈ C(Gv\{v}).
As for the last part, let S ∈ C(Gv\{v}). We have (C1)v\{v} = ∅ in Gv\({v} ∪ S)

because NG(v) � S. Then, cGv\{v}(S) = cG(S) = |S| + 1 and JGv\{v} is unmixed. ��
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We now introduce the notion of strongly unmixed binomial edge ideal, which
involves the ideals appearing in the short exact sequence (�). This sequence will allow
us to prove that these ideals are Cohen–Macaulay.

Definition 5.6 Let G be a graph. We say that JG is strongly unmixed if the connected
components of G are complete graphs or if JG is unmixed and there exists a cut vertex
v of G such that JG\{v}, JGv and JGv\{v} are strongly unmixed.

Strong unmixedness is an inherently combinatorial condition because so is
unmixedness.

Remark 5.7 In order to show that JG is strongly unmixed, we do not need to check the
unmixedness of JGv and JGv\{v} since this follows from the unmixedness of JG and
JG\{v} by Lemmas 4.5 and 5.5.

Examples 5.8 (a) Let n ≥ 2 and k ≥ 1. Consider the graph Gn,k on n +k −1 vertices,
with edge set

E(Gn,k) = {{1, 2}, {2, 3}, . . . , {n − 1, n}} ∪ {{i, j} : n ≤ i < j ≤ n + k − 1}.

Notice that Gn,k is a complete graph on k vertices with a path on n vertices attached
to one of its vertices, see Fig. 9a; in particular, the graph Gn,1 is a path on n vertices.
We prove that JGn,k is strongly unmixed by induction on n ≥ 2.

By [24, Theorem 2.7], JGn,k is unmixed. Let n = 2. If k = 1, the graph G2,1
is a single edge and we have nothing to show. Let k > 1; then G2,k is a single
edge attached to a complete graph on k vertices. Consider the cut vertex v = 2. The
connected components of G2,k\{v} are {1} and a complete graph on k−1 vertices. The
graphs (G2,k)v and (G2,k)v\{v} are complete, thus JG2,k\{v}, J(G2,k )v , and J(G2,k )v\{v}
are strongly unmixed.

Now, fix n > 2 and consider the cut vertexv = n of Gn,k . The connected components
of Gn,k\{v} are a complete graph on k−1 vertices and a path on n−1 vertices, which is
Gn−1,1. The graph (Gn,k)v equals Gn−1,k+1 and the graph (Gn,k)v\{v} is isomorphic
to Gn−1,k . For all three graphs, we conclude that the corresponding binomial edge
ideal is strongly unmixed by induction on n.

In particular, it follows that the binomial edge ideal of a path is strongly unmixed.
(b) Let H be the graph in Fig. 9b. We show that JH is strongly unmixed. First of

all, notice that JH is unmixed. In fact, the cut sets of H are

C(H) = {∅, {2}, {6}, {2, 6}, {2, 4, 6}}

and it is easy to see that cH (S) = |S| + 1 for every S ∈ C(H). We consider the
cut vertex v = 6 and show that JH\{6} is strongly unmixed. The connected compo-
nents of H\{6} are the isolated point 7 and the graph C = cone(2, P � {1}), where
E(P) = {{3, 4}, {4, 5}}. It suffices to prove that JC is strongly unmixed. By part (a),
JP is strongly unmixed, hence in particular unmixed. Thus, by Theorem 4.8 (2), JC is
unmixed. The vertex 2 is now a cut vertex of C. The connected components of C\{2}
are P and {1}, hence JC\{2} is strongly unmixed by part (a). Clearly, JC2 and JC2\{2}

123



1158 Journal of Algebraic Combinatorics (2022) 55:1139–1170

8

7

6

5

4321

(a) The graph G4,5

1
2

3

4

5
6

7

(b) A graph H with JH strongly unmixed

Fig. 9 The graph G4,5 A graph H with JH strongly unmixed

are strongly unmixed, since C2 and C2\{2} are complete graphs. Now, the graph H6
is a complete graph on the vertices {2, 3, 4, 5, 6, 7} with the edge {1, 2} attached, i.e.,
it is isomorphic to G2,6, whereas H6\{6} is isomorphic to G2,5. Therefore, JH6 and
JH6\{6} are strongly unmixed by part (a); hence, JH is strongly unmixed.

Example 5.9 IfG is a graphwith JG stronglyunmixed, not everyvertexv ofG produces
JG\{v}, JGv , and JGv\{v} strongly unmixed. For example, let G be the graph in Fig. 8a.
We will show in Example 6.11 that JG is strongly unmixed. This can also be done
by applying Definition 5.6 recursively, choosing v = 6 at the first step, together with
Example 5.8 (a). However, in Examples 5.3 we showed that if we consider the cut
vertex 8, then JG\{8} is not unmixed.

Remark 5.10 If G is a graph with connected components G1, . . . , Gc and JG strongly
unmixed, then JGi is strongly unmixed for every i . This can be easily shown by
induction on the number of vertices of G and then on the number of cut vertices of G.
The converse also holds, and it follows immediately from the definition.

Now we prove the main result of this section, showing that the strong unmixedness
of JG is sufficient for Cohen–Macaulayness.

Theorem 5.11 Let G be a graph. If JG is strongly unmixed, then JG is Cohen–
Macaulay.

Proof By Remarks 2.4 and 5.10, we may assume that G is connected. We proceed by
induction on the number n of vertices of G. If n = 2, G is a single edge; hence, JG

is Cohen–Macaulay. Fix n > 2. We now use induction on the number k ≥ 0 of cut
vertices of G. If k = 0, then G is a complete graph by definition of strong unmixedness
and, thus, JG is Cohen–Macaulay by Remark 2.1.

Suppose that k ≥ 1. Since JG is strongly unmixed, there exists a cut vertex v of
G such that JG\{v} is strongly unmixed and in particular unmixed. We consider the
decomposition JG = A ∩ B, where

A =
⋂

S∈C(G)
v /∈S

PS(G) and B =
⋂

S∈C(G)
v∈S

PS(G),

and the short exact sequence (�). ByLemma4.5 (1), A = JGv is the binomial edge ideal
of the graph Gv which has n vertices and k −1 cut vertices. Moreover, JGv is strongly
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unmixed. Therefore, by induction on k, A is Cohen–Macaulay and depth(R/A) =
dim(R/A) = n + 1.

By Proposition 5.2, B = (xv, yv) + JG\{v}, where JG\{v} is strongly unmixed and
the graph G\{v} has less than n vertices. Let H1 and H2 be the connected components
of G\{v}. By Remark 5.10, JH1 and JH2 are strongly unmixed and, thus, Cohen–
Macaulay by induction on n. In particular, JG\{v} and B are Cohen–Macaulay and
depth(R/B) = dim(R/B) = |V (G\{v})| + 2 = n + 1.

Finally, by Proposition 5.2, A + B = (xv, yv) + JGv\{v}. Recall that JGv\{v} is
strongly unmixed and the graphGv\{v} has n−1 vertices. By induction on n, it follows
that JGv\{v} and A + B are Cohen–Macaulay. In particular, depth(R/(A + B)) =
dim(R/(A + B)) = |V (Gv\{v})| + 1 = n.

The Depth Lemma [32, Lemma 3.1.4] applied to the short exact sequence (�) yields
depth(R/JG) = n + 1 = dim(R/JG). ��
Remark 5.12 Theorem 5.11 gives a new way of proving that a binomial edge ideal is
Cohen–Macaulay. For instance, it follows that the ideal JH of the graph H in Examples
5.8 (b) is Cohen–Macaulay.

Theorems 5.11 and 3.5 together imply that if JG is strongly unmixed, then G is
accessible. The next result will allow us to show that also the reverse implication holds
for some particular classes of graphs. This implies that Conjecture 1.1 holds for these
graphs.

Proposition 5.13 Let G be a class of accessible graphs such that for every G ∈ G
either the connected components of G are complete graphs or there exists a cut vertex
v of G for which G\{v}, Gv, Gv\{v} ∈ G. Then, JG is strongly unmixed for every
G ∈ G. In particular, JG is Cohen–Macaulay.

Proof Let G ∈ G. We proceed by induction on the number n of vertices of G. If n = 1,
there is nothing to prove. Fix n ≥ 2 and let us proceed by induction on the number k
of cut vertices of G. If G does not have cut vertices, then by Remark 4.2 the connected
components of G are complete graphs and the claim follows. Let k ≥ 1. Since G ∈ G,
there exists a cut vertex v of G such that G\{v}, Gv, Gv\{v} ∈ G. Since G\{v} and
Gv\{v} have n − 1 vertices and Gv has n vertices and k − 1 cut vertices, by induction
it follows that JG\{v}, JGv\{v} and JGv are strongly unmixed. Thus, JG is strongly
unmixed by definition. The last part of the statement follows by Theorem 5.11. ��

In order to use Proposition 5.13, in the next result we show that if G is accessible
and v is a cut vertex, the accessibility of G\{v} is equivalent to the unmixedness of
JG\{v}.

Proposition 5.14 Let v be a cut vertex of a connected accessible graph G. The follow-
ing statements are equivalent:

(1) JG\{v} is unmixed;
(2) C(G\{v}) is an accessible set system.

In particular, if one of the above conditions holds, then G\{v} is accessible.
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Fig. 10 A graph G such that
JG6 is not strongly unmixed
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Proof Let H = G\{v} and let H1 and H2 be the connected components of H . Assume
that JH be unmixed. By Proposition 5.2, we have

C(H) = {S ⊆ V (H) : S ∪ {v} ∈ C(G)}.

Let S ∈ C(H). If all the elements of S are cut vertices of G, then the same is true for
S ∪ {v}. Since JG is unmixed, by Lemma 4.16, (S\{s})∪ {v} ∈ C(G) for every s ∈ S.
On the other hand, if S contains a non-cut vertex s, by Proposition 4.18 we have that
(S\{s}) ∪ {v} ∈ C(G).

Conversely, assume by contradiction that JH is not unmixed. By Proposition 5.2,
we may assume that there exists T ∈ C(H) such that NH1(v) ⊆ T . We notice that
T ′ = T ∩ V (H1) is a cut set of H by Remark 2.4 (1). By assumption, there exists
t1 ∈ T ′ such that T ′\{t1} ∈ C(H). If t1 ∈ NH1(v), then set U = T ′; otherwise by
assumption there exists t2 ∈ T ′\{t1} such that T ′\{t1, t2} ∈ C(H). If t2 ∈ NH1(v),
then set U = T ′\{t1}; otherwise, we keep removing elements from T ′ until we find
tr ∈ NH1(v) such that T ′\{t1, . . . , tr } ∈ C(H) and we set U = T ′\{t1, . . . , tr−1},
where t1, . . . , tr−1 /∈ NH1(v). Moreover, since U ∈ C(H), for every u ∈ U we have

cG(U\{u}) ≤ cH (U\{u}) < cH (U ) = cG(U )

because NH1(v) ⊆ U ⊆ V (H1). Hence, U is also a cut set of G. Furthermore, for
every u ∈ U\{tr } we have

cG((U ∪ {v})\{tr , u}) = cH (U\{tr , u}) < cH (U\{tr }) = cG((U ∪ {v})\{tr })

and cG(U\{tr }) < cG((U ∪ {v})\{tr }) since v is adjacent to tr and to some vertex of
H2. It follows that (U ∪{v})\{tr } is a cut set of G. Finally, since U and (U ∪{v})\{tr }
are cut sets of G, JG is unmixed, and NH1(v) ⊆ U ⊆ V (H1), we have

|U | + 1 = cG((U ∪ {v})\{tr }) = cH (U\{tr }) < cH (U ) = cG(U ) = |U | + 1,

which yields a contradiction. ��
Example 5.15 In general, it is possible that the equivalent conditions of Proposition
5.14 hold, but G is not accessible. For instance, if G is the graph in Fig. 10, then
G\{6} satisfies both conditions of Proposition 5.14, but G is not accessible. In fact,
{3, 4} ∈ C(G), but neither 3 nor 4 are cut vertices of G.

Corollary 5.16 Let G be an accessible graph and v be a cut vertex of G such that
JG\{v} is unmixed. Then, G\{v}, Gv , and Gv\{v} are accessible.

123



Journal of Algebraic Combinatorics (2022) 55:1139–1170 1161

Proof The graphs Gv and G\{v} are accessible by Lemma 4.5 (3) and Proposition
5.14.

By Lemma 5.5, JGv\{v} is unmixed and

C(Gv\{v}) = C(Gv)\{S ∈ C(Gv) : NG(v) ⊆ S}.

Let S ∈ C(Gv\{v}) ⊆ C(Gv). Then, there exists s ∈ S such that S\{s} ∈ C(Gv).
Clearly, NG(v) � S\{s}, since S ∈ C(Gv\{v}) and, hence, S\{s} ∈ C(Gv\{v}). ��

As a consequence of Proposition 5.13 and the previous corollary, if we set G to
be the class of all accessible graphs, an affirmative answer to the following question
would completely settle Conjecture 1.1.

Question 5.17 If G is a connected non-complete accessible graph, does there exist a
cut vertex v of G such that JG\{v} is unmixed?

In the next section, we are going to prove that the answer is positive for chordal
and traceable graphs.

6 Cohen–Macaulayness of chordal and traceable graphs

The main goal of this section is to prove that for every chordal or traceable graphs G,
being accessible is equivalent to both Cohen–Macaulayness and strong unmixedness
of JG .

We start by recalling the notion of block graph. A connected subgraph of G that
cannot be disconnected by removing a vertex and is maximal with respect to this
property is called a block of G. The block graph of G, denoted by B(G), is a graph
whose vertices are the blocks of G and such that there is an edge between two vertices
if and only if the corresponding blocks contain a common cut vertex of G. In [27,
Proposition 1.3], Rinaldo proves that the block graph of any connected graph G with
JG unmixed is a tree.

To answer Question 5.17, the next result allows us to focus only on one block
instead of the whole graph.

Proposition 6.1 Let G be a connected graph with JG unmixed and suppose that for
any block B of G there exists a cut vertex vB of G in V (B) such that there are no cut
sets of G\{vB} containing NB(vB). Then, there exists a cut vertex v of G such that
JG\{v} is unmixed.

Proof Recall that B(G) is a tree by [27, Proposition 1.3], and every cut vertex of
G belongs to exactly two blocks of G because JG is unmixed. Let B1 be a block
corresponding to a leaf of B(G). Therefore, there is a unique cut vertex v1 of G in
V (B1). By assumption, there are no cut sets of G\{v1} containing NB1(v1). Let B2
be the other block of G containing v1. Again by assumption, there is a cut vertex
v2 ∈ V (B2) such that NB2(v2) is not contained in any cut sets of G\{v2}. If v1 = v2,
then JG\{v1} is unmixed by Proposition 5.2. Otherwise, we consider the other block
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B3 containing v2 and the cut vertex v3 given by the assumption. We can continue in
this way and, if we do not find any cut vertex vi for which JG\{vi } is unmixed, after
finitely many steps we reach a block Bp that is a leaf in the block graph, becauseB(G)

does not contain cycles. Hence, there is a unique cut vertex of G in V (Bp), which is
vp−1, the only element of V (Bp−1) ∩ V (Bp). Thus, JG\{vp−1} is unmixed. ��

To prove that chordal accessible graphs satisfy the condition of Proposition 6.1 we
first need a technical result.

Lemma 6.2 Let G be a connected graph such that JG is unmixed and let B be a block
of G. Let v1 and v2 be two cut vertices of G belonging to B.

(1) If v1 and v2 are adjacent and there exists a cut set Si ∈ C(G\{vi }) such that
NB(vi ) ⊆ Si for every i = 1, 2, then NB(v1) � NB[v2] and NB(v2) � NB[v1].

(2) If NB[v1] = V (B), then there exists a cut vertex w ∈ B of G such that NB(w) � S
for every S ∈ C(G\{w}).

Proof (1) Assume by contradiction that NB(v1) ⊆ NB[v2]. Let C and CB be the con-
nected components of G\{v1}, whereCB contains B\{v1}. Since NB(v1) ⊆ NB[v2] ⊆
S2∪{v2} and v1 ∈ S2, it follows that v1 reconnects at least two connected components
of C\S2.

Set TB = S1∩CB , which is a cut set ofCB and also ofG because it contains NB(v1).
On the other hand, the set W = S2 ∩ (V (C) ∪ {v1}) is a cut set of G[V (C) ∪ {v1}] by
Remark 2.4: indeed, everyw ∈ W\{v1} reconnects at least two connected components
of G[V (C) ∪ {v1}]\S2 because v1 ∈ S2; this is also true for v1 as explained in the
beginning. In particular, W is a cut set of G.

Now, we notice that TB � W ∈ C(G) because TB is a cut set of CB and W is a cut
set of G[V (C) ∪ {v1}] containing v1. Moreover,

cG(TB � W ) = (cG(TB) − 1) + (cG(W ) − 1) = |TB | + |W | = |TB � W |,

where the second equality holds because JG is unmixed. Thus, the equality cG(TB �
W ) = |TB � W | contradicts the unmixedness of JG .
(2) We first suppose that v1 is the only cut vertex of G in V (B). Then, NB(v1) =
V (B)\{v1} and NB(v1) � S for every S ∈ C(G\{v1}), otherwise every element of
NB(v1)would not be adjacent to any vertex of G\({v1}∪ S). Suppose now that there is
another cut vertexw ∈ V (B) ofG,w = v1. Then, by assumption NB(w) ⊆ NB[v1] =
V (B) and this contradicts (1). ��

Recall that a graph G is called chordal if all its induced cycles have length three.

Proposition 6.3 Let G be a non-complete connected chordal accessible graph. Then,
there exists a cut vertex v of G such that JG\{v} is unmixed.

Proof Let B be a block of G. By Proposition 6.1, it is enough to show the following
statement.
Claim: there exists a cut vertex v of G in V (B) such that NB(v) is not contained in
any cut set of G\{v}.
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By Remark 4.2, G has at least one cut vertex. In particular, V (B) contains at least one
cut vertex of G. Let v1, . . . , vr be the cut vertices of G belonging to V (B), for some
r ≥ 1.

If r = 1, then by Proposition 4.11 NB[v1] = V (B) and the claim follows by
Lemma 6.2 (2). Hence, we may assume r ≥ 2.

Assume now that NB[v1] � V (B), otherwise we conclude again by Lemma 6.2 (2).
We want to find a cut vertex v of G in V (B) fulfilling the claim. If there is a cut vertex
w such that NB(w)∪ NB[v1] = V (B), then we set v = w. Otherwise, by Proposition
4.10 we can choose vi2 adjacent to v1 and we have NB[v1]∪ NB[vi2 ] � V (B). Again,
if there exists a cut vertex w such that NB(w) ∪ NB[v1] ∪ NB[vi2 ] = V (B), then we
set v = w. If not, by Proposition 4.10, we can continue in this way choosing at each
step a cut vertex vi j adjacent to at least one of v1, vi2 , . . . , vi j−1 . By Propositions 4.11,
we eventually find a cut vertex v of G in V (B) such that NB(v)∪ NB[v1] ∪ NB[vi2 ] ∪
· · · ∪ NB[vic ] = V (B) and NB[v1] ∪ NB[vi2 ] ∪ · · · ∪ NB[vic ] � V (B); in particular,
v is adjacent to at least one of v1, vi2 , . . . , vic . Moreover, the subgraph induced by G
on {v1, vi2 , . . . , vic } is connected. To simplify the notation, we assume without loss
of generality that {v1, vi2 , . . . , vic } = {v1, . . . , vc}.

We set N = NB[v1] ∪ NB[v2] ∪ · · · ∪ NB[vc] and note that V (B) = N ∪ NB(v);
in particular, v ∈ N and NB(v)\N = ∅.

We now assume by contradiction that NB(v) is contained in a cut set S of G\{v}.
In particular, NB(v) is a cut set of G by Remark 5.4.

Assume first that there exists x ∈ NB(v)\N which is not a cut vertex of G. Since
NB(v) is a cut set containing x and x is not a cut vertex ofG, it follows that x is adjacent
to a vertex w ∈ V (B)\NB[v] ⊆ N\{v}. Thus, w ∈ NB(vi ) for some i = 1, . . . , c.
We also know that v ∈ N , therefore v ∈ NB(v j ) for some j = 1, . . . , c. Consider a
minimal path vi = u1, u2, . . . , ua = v j in G, where a ≥ 1 and uk ∈ {v1, . . . , vc} for
every k, which exists because G[{v1, . . . , vc}] is connected. Let p be the maximum
index for which {w, u p} ∈ E(G) and q the minimum index greater than or equal to p
such that {uq , v} ∈ E(G). Hence, inG there is an induced cycle v, x, w, u p, . . . , uq , v.
Thus, its length is at least four and it has no chords since x /∈ N and w /∈ NB[v],
against G being chordal.

It remains to consider the case in which NB(v)\N contains only cut vertices of
G. Let z ∈ NB(v)\N . We first show that NB(z) ⊆ NB[v]. Suppose that there
exists w ∈ NB(z)\NB[v]. Then, w ∈ N\{v1, . . . , vc} and {w, vi } ∈ E(G) for
some i ∈ {1, . . . , c}. Consider a minimal path w, vi = u0, u1, . . . , ua, v, where
uk ∈ {v1, . . . , vc} for every k. As before, let p be the maximum index for which
{w, u p} ∈ E(G) and q the minimum index greater than or equal to p such that
{uq , v} ∈ E(G). Thus, there is an induced cycle v, z, w, u p, . . . , uq , v, where z is not
adjacent to any uk since z /∈ N . Hence, sinceG is chordal,we have that {v,w} ∈ E(G),
a contradiction. Therefore, NB(z) ⊆ NB[v].

We may assume that there exists T ∈ C(G\{z}) such that NB(z) ⊆ T , otherwise
z would satisfy the claim at the beginning of the proof. This contradicts Lemma 6.2
(1). ��

We are ready to prove Conjecture 1.1 for chordal graphs.

Theorem 6.4 If G is a chordal graph, then the following conditions are equivalent:
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(1) JG is Cohen–Macaulay;
(2) JG is strongly unmixed;
(3) G is accessible.

Proof By Remarks 2.4 and Remark 5.10, it is enough to prove the claim for G con-
nected. By Theorems 3.5 and 5.11, we only need to prove that (3) implies (2). We note
that if G is chordal and v is a cut vertex of G, then Gv , G\{v}, and Gv\{v} are also
chordal. Setting G to be the class of chordal accessible graphs, the claim follows by
Proposition 6.3, Corollary 5.16, and Proposition 5.13. ��

Next we prove that the three conditions in Theorem 6.4 are equivalent also for
another large class of graphs. We recall that a connected graph G is called traceable
if it contains a Hamiltonian path, i.e., a path that visits each vertex of G exactly once.
With a slight abuse of notation, we say that a disconnected graph is traceable if each
of its connected components contains a Hamiltonian path.

Lemma 6.5 If G is a traceable graph, then every block of G contains at most two cut
vertices of G. Moreover, if G is accessible and a block contains two cut vertices of G,
then they are adjacent.

Proof Clearly, it is enough to consider the case in which G is connected. Suppose
that there is a block B of G containing three cut vertices v1, v2, v3 and let Bi a block
containing vi different from B. It is easy to see that any path that visits all vertices of
B, B1, B2, B3 has to pass at least twice through one of the vi ’s, and hence such a path
is not Hamiltonian, against the assumption. The last part of the statement now follows
by Proposition 4.10. ��

As in the case of chordal graphs, for traceable graphs we need to find a cut vertex v

such that JG\{v} is unmixed. In the next proposition, we prove a more general result,
which could be useful to answer Question 5.17.

Proposition 6.6 Let G be a connected non-complete accessible graph. Assume that
for every block B of G the subgraph induced by G on the cut vertices of G belonging
to V (B) is complete. Then, there exists a cut vertex v of G such that JG\{v} is unmixed.

Proof Let B be a block of G and let v1, . . . , vr be the cut vertices of G belonging to
V (B), where r ≥ 1, by Remark 4.2.

By Proposition 6.1, it is enough to show that there exists a cut vertex v ∈ B of G
such that NB(v) is not contained in any cut set of G\{v}.

We may assume that NB[vi ] � V (B) for every i = 1, . . . , r , by Lemma 6.2 (2);
in particular, by assumption, {v1, . . . , vr } � V (B). Given w ∈ V (B)\{v1, . . . , vr },
we define c(w) to be the number of cut vertices of G adjacent to w, i.e., c(w) =
|NB(w) ∩ {v1, . . . , vr }|. Consider u ∈ V (B)\{v1, . . . , vr } for which c(u) is minimal.
By Proposition 4.11, c(u) > 0 and, without loss of generality, suppose that u is
adjacent to v1, . . . , vc, where c = c(u). Moreover, we can assume c < r ; otherwise
B would be complete, thus NB[vi ] = V (B) for every i .

Define N = NB[vc+1] ∪ NB[vc+2] ∪ · · · ∪ NB[vr ] = V (B) and N ′ = {w ∈ N |
NB(w) � N } ⊆ (N\{vc+1, . . . , vr }). As in Proposition 4.11, it is easy to see that N ′
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is a cut set of G. Moreover, if w ∈ V (B) and w /∈ NB[v1], then w ∈ N because it is
not a cut vertex and c(w) ≥ c(u) = c. Therefore, V (B) = N ∪ NB[v1].

Now we assume by contradiction that NB(v1) ⊆ S for some S ∈ C(G\{v1}).
Clearly, S is also a cut set of G and by Corollary 4.15 we can order the elements
of S = {z1, . . . , zt } in such a way that {z1, . . . , zi } ∈ C(G) for every i = 1, . . . , t .
Let NB(v1)\N = {zi1 , . . . , zis } with i1 < · · · < is , which is not empty because
it contains u. Since S is a cut set of G\{v1}, zis is adjacent to at least two vertices
as, as+1 ∈ (V (B)\{v1})\S ⊆ V (B)\NB[v1] ⊆ N\{v1, . . . , vr }, and both as and as+1
are in N ′ because zis /∈ N .

Consider now S′ = {z1, . . . , zis−1}, which is a cut set of G. In G\S′ there is a con-
nected component containingv1, zis , as , andas+1. Therefore, zis−1 has to be adjacent to
a vertex
as−1 ∈ V (B)\(NB[v1] ∪ {as, as+1}) ⊆ N\{v1, . . . , vr , as, as+1}. Again, as−1 ∈
N ′\{as, as+1} and it is not a cut vertex of G. Repeating the same argument, we find
{a1, . . . , as+1} ⊆ N ′ where all the ai ’s are distinct and are not cut vertices of G.

Moreover, v1, . . . , vc ∈ N ′ because they are adjacent to vr by assumption and to
u by construction. Hence, |N ′| ≥ c + s + 1 and the connected components of G\N ′
are the following:

• the component containing N\N ′, which is connected because G[{vc+1, . . . , vr }]
is connected (it is indeed complete) by assumption;

• the c components outside B, each obtained by removing vi , for i = 1, . . . , c;
• the components of NB(v)\N ,which are atmost s because NB(v)\N has cardinality

s.

Since N ′ is a cut set of G and JG is unmixed, we get cG(N ′) ≤ 1 + c + s ≤ |N ′| =
cG(N ′) − 1, which yields a contradiction. ��

By Lemma 6.5 and Proposition 6.6, we get the following consequence.

Corollary 6.7 If G is a non-complete traceable accessible graph, then it contains a cut
vertex v such that JG\{v} is unmixed.

If G is traceable and v is a cut vertex of G, clearly also Gv , G\{v}, and Gv\{v} are
traceable. Then, in light of Corollary 6.7, we can prove the next result with the same
argument used for Theorem 6.4.

Theorem 6.8 If G is a traceable graph, then the following conditions are equivalent:

(1) JG is Cohen–Macaulay;
(2) JG is strongly unmixed;
(3) G is accessible.

As a consequence of Theorem 6.8, we recover the equivalence (a) ⇔ (d) in [5,
Theorem 6.1].

Corollary 6.9 If G is a bipartite graph, then the following conditions are equivalent:

(1) JG is Cohen–Macaulay;
(2) JG is strongly unmixed;
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Fig. 11 A traceable graph H 1
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3 4
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(3) G is accessible.

Proof We only need to prove that (3) implies (2). Notice that every bipartite accessible
graph is traceable: this follows by the explicit description of such graphs given in [5,
Theorem 6.1 (c)]. In fact, every block of such a graph has exactly two cut vertices and
is traceable. The claim now follows by Theorem 6.8. ��
Example 6.10 The graph H in Fig. 11 is traceable and accessible, but non-bipartite and
non-chordal. This graph already appeared in the classification of Cohen–Macaulay
bicyclic graphs [27, Lemma 3.2, Figure 7]. The cut sets of H are C(H) =
{∅, {2}, {6}, {2, 6}, {2, 4}, {4, 6}, {3, 6}, {2, 4, 6}} and it easy to show that H is acces-
sible. Hence, by Theorem 6.8, JH is Cohen–Macaulay and strongly unmixed.

Example 6.11 Theorem 5.11 can be useful to find new examples of graphs, which are
not chordal nor traceable, and whose binomial edge ideal is Cohen–Macaulay. For
instance, the graph G in Fig. 8a is not chordal nor traceable (since it has a block
containing three cut vertices of G), but JG is strongly unmixed. In fact, if we consider
the cut vertex 8, then

• G\{8} is traceable and C(G\{8}) = {∅, {2}, {4}, {7}, {2, 4}, {2, 5}, {2, 7}, {3, 4},
{2, 5, 7}};

• G8 is chordal and C(G8) = {∅, {2}, {7}, {2, 7}, {2, 5, 7}};
• G8\{8} is chordal and C(G8\{8}) = {∅, {2}, {7}, {2, 7}, {2, 5, 7}}.

It is straightforward to check that the previous three graphs are accessible. Hence, by
Theorems 6.4 and 6.8, their binomial edge ideals are strongly unmixed. We conclude
that JG is Cohen–Macaulay by Theorem 5.11.

7 Further remarks and problems

Finally, we discuss some examples and open problems. First of all, we notice that it is
enough to prove Conjecture 1.1 for indecomposable graphs, see [27, Definition 2.1],
i.e., graphs that cannot be decomposed as G = G1∪G2 where V (G1)∩V (G2) = {v}
for some vertex v which is free both in G1 and in G2. In fact, if G is decomposable
as G = G1 ∪ G2, then

• JG is Cohen–Macaulay if and only if JG1 , JG2 are Cohen–Macaulay by [24,
Theorem 2.7] and,

123



Journal of Algebraic Combinatorics (2022) 55:1139–1170 1167

12

3 4

56 7

8

9

(a) A chordal graph G

10

11

12 13

14

15

16
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Fig. 12 A chordal graph G. A traceable graph H . The graph F

• using the description of the cut sets in [24, Lemma 2.3], it is easy to show that G
is accessible if and only if G1, G2 are accessible.

Given two graphs G and H , we introduce a new construction that produces a new
graph obtained by gluing certain subgraphs ofG and H along a cut vertex.We illustrate
it through an example.

Example 7.1 Let us consider the graphs G and H in Fig. 12a and (b), respectively.
Notice that JG\{8} and JH\{11} are unmixed. Let G ′ and H ′ be the connected

components of G\{8} and of H\{11} that are not a single vertex, i.e., G ′ =
G[{1, 2, 3, 4, 5, 6, 7}] and H ′ = H [{12, 13, 14, 15, 16}]. Then, we consider the graph
F obtained by gluing the graphs G[V (G ′)∪{8}] and H [V (H ′)∪{11}] identifying the
vertices 8 and 11, see Fig. 12c.

One can check that JF is unmixed and we claim that it is also strongly unmixed.
In fact, if we consider the cut vertex v obtained by the identification of 8 and 11, then
the graphs F\{v}, Fv and Fv\{v} are chordal and it can be shown that they are all
accessible. Hence, by Theorem 6.4, their binomial edge ideals are strongly unmixed.
We conclude that JF is Cohen–Macaulay by Theorem 5.11.

The same holds if F is the graph obtained by gluing G[V (G ′)∪{i}] and H [V (H ′)∪
{ j}] identifying the vertices i and j , where i ∈ {2, 5, 8} and j ∈ {11, 15}.

Notice that G is chordal and H is traceable, but the resulting graph F is not chordal
nor traceable.

Example 7.1 can be generalized as follows.

Problem 7.2 Let G and H be connected graphs, v be a cut vertex of G and w a cut
vertex of H. Set G\{v} = G1�G2, H\{w} = H1�H2 and suppose that JG, JH , JG\{v}
and JH\{w} are unmixed. Let Fi j be the graph obtained by gluing G[V (Gi ) ∪ {v}]
and H [V (Hj ) ∪ {w}] identifying v and w, for i, j = 1, 2. If JG and JH are Cohen–
Macaulay, is it true that JFi j is Cohen–Macaulay? If G and H are accessible, is it
true that Fi j is accessible?

In [5, Corollary 6.2], we proved that for bipartite graphs, binomial edge ideals
are the same up to isomorphism as Lovász-Saks-Schrijver ideals in two sets of vari-
ables (see [14]), permanental edge ideals (see [14, Section 3]) and parity binomial
edge ideals (see [17]), but this does not hold for non-bipartite graphs. Hence, even
though Conjecture 1.1 would prove the field-independence of Cohen–Macaulayness
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(a) A traceable graph G

2 4 6 8

1 3 5 7
(b) A bipartite graph H

Fig. 13 A traceable graph G A bipartite graph H

for binomial edge ideals, this would not ensure the same for the other three classes.
Indeed, Cohen–Macaulayness of permanental edge ideals depends on the field, as the
following example shows.

Example 7.3 Recall that the permanental edge ideal of a graph G on the vertex set [n]
is the ideal

�G = (xi y j + x j yi : {i, j} ∈ E(G)) ⊆ K [x1, . . . , xn, y1, . . . , yn].

LetK4 be the complete graphon4vertices. If char(K ) = 2, then�K4 = JK4 isCohen–
Macaulay (since it is the ideal of 2-minors of a (2×4)-generic matrix), whereas using
Macaulay2 [10] one can see that �K4 is not Cohen–Macaulay if K = Q. This shows
that the Cohen–Macaulayness of permanental edge ideals cannot be characterized
combinatorially.

Hence, it is natural to ask:

Problem 7.4 Does the Cohen–Macaulayness of Lovász-Saks-Schrijver ideals and of
parity binomial edge ideals depend on the field? If not, is there a combinatorial
description of Cohen–Macaulayness in terms of the underlying graph?

Example 7.5 The graph G in Fig. 13a has the property that both the regularity and the
projective dimension (and, hence, the depth) of the associated Lovász-Saks-Schrijver
ideal LG in two sets of variables and of the parity binomial edge ideal IG depend on
the field. More precisely, if R = K [xi , yi : i ∈ [8]], using Macaulay2 [10] one can see
that:

pd(R/LG) = pd(R/IG) =
{

12 if K = Z2

11 if K = Z3
and

reg(R/LG) = reg(R/IG) =
{

7 if K = Z2

6 if K = Z3
.

As for binomial edge ideals, we do not know whether the depth or the extremal
Betti numbers are independent of the field. However, their Betti numbers may be
field-dependent.

Example 7.6 Let H be the bipartite graph in Fig. 13b. Using Macaulay2 [10], one can
check that some graded Betti numbers of JH are different over Z2 and over Z3.
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In [15], Jayanthan andKumar compute the regularity of Cohen–Macaulay binomial
edge ideals of bipartite graphs using the explicit description of these graphs given in
[5, Theorem 6.1 (c)]. By the proof of Corollary 6.9, these graphs are traceable. Thus,
we ask the following:

Problem 7.7 Is it possible to find a formula or bounds for the regularity of Cohen–
Macaulay binomial edge ideals of traceable graphs?
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