Background
Symptoms of obsessive–compulsive disorder (OCD) are partly related to impaired cognitive control processes and theta modulations constitute an important electrophysiological marker for cognitive control processes such as signaling negative performance feedback in a fronto-striatal network. Deep brain stimulation (DBS) targeting the anterior limb of the internal capsule (ALIC)/nucleus accumbens (NAc) shows clinical efficacy in OCD, while the exact influence on the performance monitoring system remains largely unknown.
Methods
Seventeen patients with treatment-refractory OCD performed a probabilistic reinforcement learning task. Analyses were focused on 4–8 Hz (theta) power, intertrial phase coherence (ITPC) and debiased weighted Phase-Lag Index (dwPLI) in response to negative performance feedback. Combined EEG and local field potential (LFP) recordings were obtained shortly after DBS electrode implantation to investigate fronto-striatal network modulations. To assess the impact of clinically effective DBS on negative performance feedback modulations, EEG recordings were obtained pre-surgery and at follow-up with DBS on and off.
Results
Medial frontal cortex ITPC, striatal ITPC and striato-frontal dwPLI were increased following negative performance feedback. Decreased right-lateralized dwPLI was associated with pre-surgery symptom severity. ITPC was globally decreased during DBS-off.
Conclusion
We observed a theta phase coherence mediated fronto-striatal performance monitoring network. Within this network, decreased connectivity was related to increased OCD symptomatology, consistent with the idea of impaired cognitive control in OCD. While ALIC/NAc DBS decreased theta network activity globally, this effect was unrelated to clinical efficacy and performance monitoring.