dc.contributor.author
Begehr, Heinrich
dc.contributor.author
Shupeyeva, Bibinur
dc.date.accessioned
2021-09-03T13:36:27Z
dc.date.available
2021-09-03T13:36:27Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31824
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31557
dc.description.abstract
There are three basic boundary value problems for the inhomogeneous polyanalytic equation in planar domains, the well-posed iterated Schwarz problem, and further two over-determined iterated problems of Dirichlet and Neumann type. These problems are investigated in planar domains having a harmonic Green function. For the Schwarz problem, treated earlier [Ü. Aksoy, H. Begehr, A.O. Çelebi, AV Bitsadze’s observation on bianalytic functions and the Schwarz problem. Complex Var Elliptic Equ 64(8): 1257–1274 (2019)], just a modification is mentioned. While the Dirichlet problem is completely discussed for arbitrary order, the Neumann problem is just handled for order up to three. But a generalization to arbitrary order is likely.
en
dc.format.extent
22 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Poly-analytic
en
dc.subject
Cauchy-Schwarz-Pompeiu representation
en
dc.subject
Green function
en
dc.subject
Neumann boundary value problems
en
dc.subject
Admissible domain
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Polyanalytic boundary value problems for planar domains with harmonic Green function
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
137
dcterms.bibliographicCitation.doi
10.1007/s13324-021-00569-2
dcterms.bibliographicCitation.journaltitle
Analysis and Mathematical Physics
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s13324-021-00569-2
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1664-235X
refubium.resourceType.provider
WoS-Alert