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Abstract

There are three basic boundary value problems for the inhomogeneous polyanalytic
equation in planar domains, the well-posed iterated Schwarz problem, and further two
over-determined iterated problems of Dirichlet and Neumann type. These problems
are investigated in planar domains having a harmonic Green function. For the Schwarz
problem, treated earlier [0. Aksoy, H. Begehr, A.O. Celebi, AV Bitsadze’s observation
on bianalytic functions and the Schwarz problem. Complex Var Elliptic Equ 64(8):
1257-1274 (2019)], just a modification is mentioned. While the Dirichlet problem is
completely discussed for arbitrary order, the Neumann problem is just handled for
order up to three. But a generalization to arbitrary order is likely.
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1 Introduction

In the endeavor to build a general theory for complex partial differential equations
the study of model equations is a further step after extensive investigations of basic
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equations as the Cauchy-Riemann and the Poisson equation. There are two kinds
of model equations, the polyanalytic and the polyharmonic equation. The present
considerations are restricted to the polyanalytic equation 0w = f for natural n € N.
The case n = 2 is the Bitsadze equation and is related to bianalytic functions. As the
polyanalytic equation can be decomposed into a system of n inhomogeneous Cauchy-
Riemann equations n boundary conditions may be imposed.

For the Cauchy-Riemann equation the natural boundary value problem is the
Schwarz problem, prescribing the boundary values of the real part of the function and
additionally fixing the value of its imaginary part in just one point of the domain under
consideration. For particular domains as the unit disc the solution is given in explicit
form by proper modification of the Cauchy-Pompeiu formula [1-3,5,11,22,23,27,30].
For certain other simply connected domains having a harmonic Green function an
explicit representation formula is also available [6-8].

Two other, but ill-posed problems are the Dirichlet and the Neumann boundary
value problems, prescribing on one hand the boundary values of the function and
on the other those of its normal derivative together with a normalization condition.
For these over-determined boundary value problems solvability conditions need to be
determined. In case of the unit disc they are explicitly given [11]. For general domains
they are available at least in the case that the domain is equipped with a harmonic
Green function, see [6] for n = 2.

Having these three different boundary value problems for the Cauchy-Riemann
equation in mind, all possible combinations of them are candidates for posing boundary
values for the polyanalytic equation, see for the Bitsadze equation [6,7], where besides
the iterated Schwarz, Dirichlet and Neumann problems also the Dirichlet-Neumann
and Neumann-Dirichlet problems are studied.

Further investigation will here be restricted to the iterated Schwarz, the iterated
Dirichlet and the iterated Neumann boundary value problems for the inhomogeneous
polyanalytic equation. The first listed problem was treated in [6] already for certain
simply connected domains having a harmonic Green function. In Sect. 2 this result
is slightly modified in replacing the origin by any arbitrary fixed point of the domain
for the side conditions. In order to explain that the restriction to admissible simply
connected domains is sufficient but not necessary for treating the Schwarz problem
in domains with harmonic Green function, the concentric circular ring domain is
borrowed from [28] in Sect. 3.

The polyanalytic Cauchy-Pompeiu representation formula immediately provides
the solution to the Dirichlet problem for any n € N in cases the solution exists,
Sect. 4. The solvability conditions, guaranteeing that the Cauchy-Pompeiu formula
gives the solution, are expressed through the harmonic Green function for the domain.
This generalizes the result for the Bitsadze equation from [6].

Finally in Sect. 5 the Neumann problem is treated for domains with harmonic
Green functions. The respective result for the Bitsadze equation from [6] is modified
in order to handle the problem for the trianalytic equation. For convenience the result
for the Cauchy-Riemann equation is repeated. The introduction of a proper modified
Pompeiu integral operator for the cases n = 2 and n = 3 gives an idea how to proceed
for general n.
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1.1 Basics for the polyanalytic operator
The fundamental solution to the polyanalytic operator of order » is given as [17]

1 yn—l

T an—1) z

Lemma 1 The polyanalytic fundamental solution satisfies for regular domains D

1 1(@¢—2)" . 1 1 (E)n—l
2mi Dn' TR p =D ¢z dédn, neN,
9

n ¢—z  2mi alp-D T—z T-¢
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Moreover, for any function ¢, analytic in D,

L[ 1@ N
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holds.

Remark 1 In particular with the harmonic part of the harmonic Green function for D,
Gi(z.5) = h(z.{) —log|¢ —zf,

1 1 (¢ —2)"

27i Jyp n! {—z

1 = _ n—1
metc. D = [ s T Ddedn, ne,

holds for z,7Z € D. Although as well this relation as the formulas in Lemma 1 will not
be used later on, they seem to be of own interest.

Proof While the first two relations are just consequences from the Gauss and Cauchy-

Pompeiu theorems [10,11], the last formula needs a manifestation. The Cauchy
theorem implies for analytic functions ¢

p(z) = —f (§)—

and from the Cauchy-Pompeiu representation

1 _ d 1 d&éd
Z0(2) = 7/ o) -2 —/ (c)ﬂ
i Jyp {—z 7 -z
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is seen. Multiplying the first formula with z and subtracting both relations, verify (1)
for n = 1. For higher powers analogously arguing the relations

—n—v —n—v—1
i 1 s de 1 IS d&édn
n—won ¥ _Z_m/D(n SYAACLy iy S 1L AC

multiplied with (=1)" 75 17V and added up for v between 0 and n lead to

1 —2)" —2)!
[ C Y a2 nf Z)” €= =Dy ¢ygan.

277.’[ D E
O

The basic representation formula related to the polyanalytic operator, see e.g. [18],
is the

Cauchy-Pompeiu representation formula. Any functionw € C"(D; C)NC"~1(D; C),
where D is some regular domain in C and n € N, can be represented as

Sl J Ve s G
w() = sz/ o tee - - [ ST atudzan,
@)

2 Polyanalytic Schwarz problem

As an analytic function is uniquely determined by the boundary values of its real
part up to an additive imaginary constant, also polyanalytic functions are given up to
polyanalytic polynomials of lower order through the boundary values of the real parts
of their lower order z—derivatives.

Definition (n-Schwarz problem.) Find in a domain D of the complex plane C with
afixed zop € D and n € N a solution to

ofw=f inD, Redlw =1y, on 9D, Imdlw(zo) =cu. 0<pu<n-—1,

for givendata f € L,(D;C), 2 < p,y, € COD;;R),c, € R.

For solving the Schwarz problem the Cauchy-Pompeiu representation is modified.
It provides the unique solution to the n-Schwarz problem. At first, see [6,33,34], the
case n = 1 is investigated.

The_orem1 (Cauchy-Schwarz-Pompeiu representation.) Any w € C!(D;C) N
C(D; C) for a simply connected admissible domain D with Green function G1(z, ) =
hi(z, ¢) —log|¢ — z|%, and some arbitrarily fixed point zy € D can be represented
as

. 1 ¢ —z0 d¢ _ 1 7
w(z) = ilmw(zp) + 2—m/;DR€w(C)|: T —z {'——Z() + <h1§(Z, {) - z _Z())d;]
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1 5 {+z—2z0 1 B
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I 1
—wr @) 217 @ ©) = hyp(z0, €) - ﬁ]}dsdn.

Remark 2 Admissible for adomain D means that forany ¢ € 9 D the function & 172G 9)
is analytic in D, see [6,7]. The reason for this demand is, see [6], Lemma 3, that in
proving the Cauchy-Schwarz-Pompeiu representation the integral about the imaginary
part of the function w is required to be constant in the representation

- e 0]+ 5 o

w(z) =57 /aD Rew(C)[E +hz(z, Z)df} + o /BD Imw(g)[g — hiz G é‘)d(]
1 1 _

- /D [w;(;)gfZ — wp Oz ) |dsdn. 3

A condition for admissible domains and examples are given in [7].
Helpful for operating with the Green function is the differential relation [6]

d¢  VdE —
T M@ ode= —[

d _
—g—hlz(z; C)di], tedD, zeD, 4)
{—z
a consequence of its boundary behavior G1(z; ¢) = 0for { on 9D, z € D. Moreover,
for the outward normal derivative 9, on the boundary d D with the arc length parameter
s¢ for any z € D the relation
; d dc _
= 10, Gz sy = 22 = S e O+ g AT (9

holds.

Iterating the above representation leads to the general Cauchy-Schwarz-Pompeiu
formula which coincides in the case of the unit disc D = I with the respective
representation in [10,19].

Theorem2 Any w € C"(D; C) N c"~Y(D;C) for an admissible domain D, 79 € D,
in the complex plane C with Green function G(z, ) is representable as

n—1,. "
iImoZ w(zo)
{Z—(Z —z20+2z—z20)"

w(z) = Z p

n=0
(=D*
2mwip!
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- a;w(;)[zhu(z, ¢) = hyz(z0,¢) —

This formula is deduced in [6] for zg = O.

“(; —z+¢—2)" lagdn.
(6)

— 20

3 Cauchy-Schwarz-Pompeiu representation for a circular ring domain

The representation formula (3) holds for any planar domain with a Green function. It
can be used to deduce a Cauchy-Schwarz-Pompeiu representation directly although
h IE(" ¢) is not analytic. This is achieved exemplarily for the doubly connected circular

ring R =

log |z|*log|¢|?
log r2

Gi(z,¢) =

For € 9R,z € R

d¢

-2 «—
+10g‘—‘ — lo
{—z Z

{0 < r < |z] < 1}. Its harmonic Green function is, see [28,29],

(z—r¥o) (¢ —rPg) 2
r2my (1 — r2nzz)
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n=1 (Z§
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with

o0

2n 2n
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21 = Z(,ln;- -z + é- _anZ)’ 22

n=1
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Obviously for R the derivative &7 (-, {) is not analytic. In particular

X T4, = { ‘
1—z¢
and hence
itz

d; [Z_Z -
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;T — hlf(z’ {)dé‘ = { [ logl\zigz
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log r2

log|z|*
2
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Substituting these relations into (3), rewriting

50 ], R (7 %z 00dF) = il Rew(;)(—+2z)d;

—ﬁ R (z)( g'Z'2+2 > )d{—g—% m_rRew@)—,

o [ @ (75 g 0d) = - [ o (; g'f'2+1—21 =)
i 7 gl=r Imw(f)%

and observing

Y L TP T G Sy 1
i aRw(C)K —n/R dédn, i aRw@)C =z ). ¢ dédn,

L w(;)zdi lf f(c)zdsd
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leads to the Schwarz representation for R, see [28],

_ | {+z @ _1 [ 5%
we) = [ Rew@[FE 4 2m )T - G
1 wr (&) ¢ +z wg(é“) 1422
_Z/l—g [—{_Z+221]+ : [I_ZE+22]]d§dn. )

For general multiply connected domains the complex harmonic Green function
Mi(z, ¢), see e.g. [25], is available for constructing the Schwarz integral operator.
It may be helpful to modify the representation (3) in the general case.

4 Polyanalytic Dirichlet problem

While Dirichlet data for the Poisson equation provide a well-posed boundary value
problem [12-14,16,21], for the Cauchy-Riemann operator they deliver an over-
determined problem. Hence, a condition is required for solvability. This situation
is repeated to the Bitsadze operator, i.e. the square of the Cauchy-Riemann operator, if
Dirichlet data are posed for the function and also for its z—derivative, see [6,11]. The
extension to the polyanalytic operator of arbitrary order is natural and quite simple.
Just the solvability conditions have to be handled. Other boundary value problems like
the Neumann [4,27,32], the Robin [14,26] and combinations of them for the polyana-
Iytic (and polyharmonic) operators are, in principle, possible to be studied but turn out
to be involved. Some examples were treated just for the Bitsadze operator in [6,11].

In [9] the Dirichlet problem is investigated for general poly-harmonic operators in
aring domain, see also [29].



137 Page8of22 H. Begehr, B. Shupeyeva

Definition (n-Dirichlet problem.) The iterated Dirichlet boundary value problem
for the polyanalytic operator of degree 7 is to find a solution w and proper solvability
conditions for the data f, y,, given, satisfying

dGZw(@) = f), z€D, 3§w(§)=yﬂ(§), (edD, 0=sp=n-1, (8

for a domain D of the complex plane C with boundary d D.

In case a solution does exist the polyanalytic Cauchy-Pompeiu representation for-
mula (2) provides an integral representation formula in terms of the given data [6,11].
However, the solvability conditions have to be determined.

Theorem 3 The Dirichlet problem for the polyanalytic operator with data f €

L,(D;C), 2 < p, yu,€COD;C), 0 < p <n—1,issolvable if and
only iffor0 <u <n-—1,

2mi

n—1 1 1 v—p V— deydn,
+ —/ (Co—p+1) —/ 3 h1(z, 1) —d -
v:Zu;H 27i Jop Yo (lv—pt1 (JT D) ch1(z, &1 1_[ . Cvmpit1

DVM(C)aghl(L ¢)d¢

: L[y e dgdn,
:;,/Df(é‘”_ﬂ)(;/D) 8§1h1(2,§1) 1_[ md%‘n_udnn_u_ 9)

r=1

The solution then is given as

- 1)"(5—2)" S o
wz) = szf s — - [ CO S pedean,
(10)

The proof is again an induction argument.

Proof For n = 1 this is just the Dirichlet problem for the Cauchy-Riemann operator.

That
1 d&éd
w(z)=rf (;)———/f(;) sdn.
Tt JoD

is the solution if and only if

1 1
[ v@uhe i = f F©O)deh 2, O)dEdn
Tl Jap T JD

is satisfied, is a consequence of the property of the Pompeiu operator, the Green
function and the Poisson kernel. Adding the condition to the representation formula
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leads to
1 1
w(z) =—4—/ V(g)au(Gl(Z’f)dSC+_/ f(8)3:G1(z, £)dédn.
T JaD 7T Jp

The second part, the necessity, is a consequence of the fact that a solution to the
problem w, in case it exists, is representable by the Cauchy-Pompeiu formula, while
the function

~ 1 1
w(z) = _T/ y(©)ochi(z, §)ds + —/ f()ochi(z, )dédn
Tl JyD T Jp

added to the solution w obviously contributes a solution to the Dirichlet problem, w +
w, for the Cauchy-Riemann equation. Hence, the harmonic function @ has vanishing
boundary values and thus is identically zero.
The uniqueness of the solution is evident from the theory of analytic functions.
To prove the statement of the theorem for n 4 1, this problem is decomposed into
the system

Bg‘w:a)in D, B;w:yu on D, 0<u<n-—1;
dzw=f, in D, w=1y, on dD.

Representing w as

1 dey— 1 dén—1dn,—
w(z) = _/ Vn@nﬂﬂrl)n—lﬁ_l - _/ f(§n7u+1) nop it
2ri Jyp Cn—pt+1 — 2 T JD Cn—p+1 —2
(1D
and noticing the solvability condition
1 1
P Yn()dchi(z, £)dE = —/ F(&)dchi(z, §)dEdn, (12)
Tl Jap T JD

the right-hand side of the solvability conditions (9) with f replaced by w can be written

as
l L déﬁ—u—&-l i|
b4 /;)|:2JTI' /;yn(gn_ﬂ+l)§nu+l — Cn—p

1 [ \n—n—1 m g dn
(3 ) aame [T 2 dedn,

7'[ —_—
iey ST G

1 1 d&n—p+1dn,—
——/[—f(cn_w) Snpe 11 "“}
T Jp|lLTT

é‘nfp_Jrl - Cnfu

1 [ \nn-l " dgdn
o R RN §

7'[ —_—
i S G



137 Page 10 of 22 H. Begehr, B. Shupeyeva

But this is just

1 1 n—ua I
_E{/E;D J/n(in—wrl)(; /D) i hi(z, ¢1)

n—p—1

ﬁ dédn, d%‘n—,udnn—u
i1 O — ut1 {n—p, - gn—p,+l

1 1 n—ua "
+;AmePmﬂ(;ﬁ) (@ &)

n—p—1

ﬁ d&dm, dEy—ydnu—p
=1 O — t1 gn—;t - §n—u+l

}dgniﬂrl

}dSnu+1d71nu+l .

Replacing the area integral on the right-hand side of (9), with f replaced by w, by this
sum, the resulting equations supplemented with (12) form the solvability condition
9) forn + 1. m]

5 Tri-analytic Neumann problem

Basic is the Neumann problem for the Cauchy-Riemann equation.

Theorem 4 The Neumann boundary value problem
ow=7y on D, w(zg) =c,z0€ D,y € C(dD;C),c e C,
for the Cauchy-Riemann equation
w;=f in D, feC*D;C),0<a <1,

is solvable if and only if

1 1 — 1
EfaDV(Z)hlg(z, $)dsg + %/31) S ©Ohig(z, O)ds + ;/Df(c)hu;(z,{)dédn =0.

The solution then is

w@w—if(mo“”w—iffmmgﬁﬁ
- 2n 8Dy g(—zo 27 Jap gg“—zo
1 Z—20
- ——dé&dn. 13
nfpf@(g“—z)({—zo) sdn (1

Proof For the proof instead of reducing the problem to the Dirichlet problem for
analytic functions the result can be just verified. Obviously, the function (13) satisfies
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as well the side condition w(zp) = c as the differential equation wz = f because of
the property of the Pompeiu operator

d&d
Tf(z) = ——/ FO g i

see e.g. [10,31]. For verifying the boundary condition the solvability condition is
needed. The outward normal derivative d,, on the boundary 9D is expressed as

i3y ds = 0;d¢ — %df Applied to the Green function G1(z, ¢) = —log|¢ — z|* +
hi(z, ¢), observing (5), gives

1
2 [{Tz —hi(z, C)] d¢ = —id,,G1(z, §)dsg = 2ipi(z, §)ds¢
with the Poisson kernel pj(z, ¢) of the domain D, satisfying

_ 1
nggrelw ) V(K)m(z, $dse =y (o)

for continuous y.
Denoting z° = 9,z a calculation from (13) shows

1 dc
+E/E;Df(§)§_

with the Ahlfors-Beurling operator [10,31]

w;(2)z° — wz(2)z’

- 7+ Nf@)z — f)z
271 Z

1 f©)
I1 -
&= p (£ —2)? agdn
Thus the solvability condition gives
w,(2)z — wz(2)z"
_ 1 iy(¢) 0]
= )6 )PI(Z g)dsez +—/ if (O)p1(z, g)g o )ds;z

— 1
- 1@F 4 o [ F©R61 odsdn:
D
Letting z approach a boundary point ¢y leads to

10y, w(lo) = Zli)nglo[wz(z)z' —wz(2)z'] = iy (%)
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Remark 3 1t is just because of the properties of the IT—operator, see [31], and the
appearance of the function f in some boundary integral that f is required to be
Holder-continuous on the closure D of the domain D.

On the other hand, assuming the Neumann problem has a solution, proper manip-
ulations of the Cauchy-Pompeiu representation formula, the Dirichlet problem for
analytic functions, and an integration show that the solution has the form (13). Then
necessarily the solvability condition holds.

An iteration process leads to the solution of a Neumann problem for the Bitsadze
equation [6,7].

Theorem 5 The iterated Neumann problem for the Bitsadze equation in a domain D
with Green function G1(z, ¢)

wz = f in D, dw=yy, dhywz=y; on 0D, w(zo) = cp, wz(z0) =c1, 20 € D,
for
feCD;C),0<a <1, y,y €C@OD;C), co,c1 €C,

is solvable if and only if

1 1 o
g.[;u vo(©hig (2. )ds; +Cl[% /aDhlc(Z,é“)dé“ + ;/ hige (z, C)dédn]

1 1 ¢ -¢ ~ =, 1 ¢ -2
-5 [ n©[5 /Dlogg_—mhlg(z,mun/log; iz DB

2
! §*Z e N 1 = C
C27i Jy f( [2711 /Dlog;“—izohl{(z’{)d(—i_n_/bg; hli;(z C)dédﬂ]
1 1 e ~d
_7/f§ 27n_/ <7E_C—72) 17z g
7/ {—{ _ )hlg;(z f)di"dn]dédn_

. /BD Y1(©hi (2, Hdsg + i ./30 F©hie(z, 9)dE + ;/;)f(()hlgg(z, {)dédn = 0.

The solution then is

w(z)

=0 Ak w[(i—i)dulg;—d;]—i/a (@) log £ d
+§/ m(;)zjn./D[(;:i—giz)logf_gdulogf - logf id?]ds;
+21; s )2]”/13[(5:2—g:ig)log;__jodz—l—logg__;log;__idZ]dg
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Z2—20 {—¢ -2\ ~
_ _ - = d
/f({ 2711/ ((—z)(é—zo)<§—{ C—Z) ‘

& =20 {—z =
log = dc |dédn.
T C-DC -z gC—zo ¢Jadn

This is a modification of the respective Theorem 8 from [6]. It shows a nice symmetry
in its four parts. The proof is based on the decomposition of the problem into a system
of two Neumann problems for Cauchy-Riemann equations and Theorem 4. As for
Theorem 4 also here a verification is performed.

Proof Obviously, w(zo) = co. By differentiations

1 —7 _
wz(z) =¢y ——/ Vl(C)lOg dS; / f(¢)log ¢ Zd{
¢ — 27i Jyp {—20

- TN gea
,Tf,)f@)(;_z)(;_m) sdn

and wzz(z) = f(z) are seen. From Theorem 4 it is clear that the Neumann and
side conditions are satisfied for wz. For verifying the Neumann condition for w, the
difference

w;(2)7 — wz(2)7

- 1 dédn 1 dt i/ ds¢
B C]Z[ ./D(Z—Z)2 2mi aDC—z]+2ﬂ aDVO(O{—Z

-7 dEdy 1 t-% dt
+7 1 ~ d:
/ J/I(C) / —ZO(§_Z)2 i aD Og{—10§_z] N
¢-T dEdy 1 (-0 4T e
z ~ | - 5 [ log——~——1]d
+2m ; f(f)[ﬂ/D Ogg‘—zo(C—Z)z 27i Jap ogC—ZOC_Z] ‘

¢ — 20 d&d’ I / -2 dz
< . - > ~ ded
/ f(;) ./D (c—C@C—2z20) C—22 2mi Jyp (;—C)(C—zo)c—z] s

—zc1+—f Vl(C)IOgC s + —f f(z)log

“dg
20
— d&d
/ IO G ot — S
is calculated. Adding the first solvability condition to this expression gives
w,(2)z — wz(z)z

= ez f(@ 5 e 0)dedn— o [ (= hie o)z

e [ (5 — et ©))dse

é‘ 1
e [ s | e et (o e D) B
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— | og _Zo(i—hlg@f))d?]d?

7 — 20 1 =N
_/f@) /D(;—;(4—z0)<(5—z>2+h1“(z’§)>d5d"

{—Zo 1 ~\ =
- ~ — hz(z, dc |déd
271 Jop @—c)(g—zo)( m O)dE Jdsdn

-7 +—f v1(¢) log ;

e 270 ggdn.
+n/l>f@)(§—z><c—zo> sdn

Observing the property of the Poisson kernel and the fact that G(z, ¢) vanishes
identically in ¢ for z € aD,

1 1 {—¢

. -
ds; + 1
S¢ m./an(C)Ogg_

lim [w.(2)z — wz(2)z'] = iyo(¢)

z—>C€
is seen. o

Corollary 1 The iterated Neumann problem for the Bitsadze equation is solvable if
and only if

1 1 1 ~ dEdj
2—/ W(Ohie . Ods; — 2—/3 w@)*/Dhlz(Z?Ofg_gdS:

déd 77
27”[ FO— f hi Oz dt

fd dédn =0,
S RGE R ;(z()( Ldedn

1 _ 1
= fw NOhic (e s + 5 /BD F@ s @ 0T + /D F©Ohiee . )dedn = 0.

The solution then is

- 1
w(z)=€o+€1(z—z0)—E/3 Vo(é)log; ng
1 ; ¢ -
5 SD)/l(é“)Zm D{ ZIOgE_ d{ds;
I L[ T-¢, Tz ~_
- —_— lo decd
2mi oD é‘27'[1 D§_§ g§_10 ¢t
(¢ ‘-

_ _ log = ddd
/f 27i Jap @ —¢)? OgC e
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Proof Observing the relation

-z i = /dgdn
2mi BDE—Z pi—2

the factor of —cy in the formula for w in Theorem 5 by integration by parts and the
Cauchy-Pompeiu formula is seen to be

1 -7 =~ 1/ 1 1 7~ -
— log = d¢ + — ~ — = dédn = —(z — 20).
27i Jap gé“—zo ‘o D|:§_Z §—z0] s ( 0

Also the Gauss theorem and the Cauchy-Pompeiu formula imply

o aD[(F_E_Z())lOg éV_Eclz+log~§_z log C—Ed?]

2mi ;—z . — 20 §—20 ¢ —20 £ —20
:__/ o _ngdn _L_ E_glog}:_zdz,
—zog‘—( 2ni Jop & —=¢ T ¢ —20

1 Z—20 §—€ C—2z\ ~
_ = — = d
2mi D[(C—z)(c—10)<§—§ E—Z) ¢

7 -2 ) E_Zd] 1 l—¢ -z

- - 0¢g ~ — — log = d~.
- T T mi o G2 BT

Moreover, the first solvability condition can be simplified as

1 _ 1
o hu(z,@)du—/ hice (2, O)dEdn = 0,
Tl Jop T JD

—1 1 og - 7z, 0)dE + — ! / log - gh 77 (2. O)dEdT
2mi ¢ — hiz ¢ — 1¢¢

S déd” Y [ e nisis

= f’ﬁ;(z §)~ ¢ 7ol /BDhu(z,C)E_gd(,

C—zo )

1
BRI N Sk P /—
27i Jop (¢ — ) — 20) hip (@ D D (£ =0 —20)

1 a1 T=¢ -
‘_n/ M@ D = 2m'/ Mg O 5de

177 (2. O dEdT

]

Continuing this iteration process, the iterated Neumann problem is treated for the
tri-analytic equation.

Theorem 6 The problem

Wz = f in D, dw =1y, hwz=1y, hwz =7y on D,
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w(zo) = co, wz(zo0) = c1, wzz(z0) = c2,
for feC%D;C), y € COAD;C), ¢t €C, k=1,2,3,

is solvable if and only if the conditions

L f m(;)/u;(z,z;)ds;+2L /a ”“)2% /a ) (; _5)2 -
3 dédy dedn
+—/ J/z(C)—f / E_nf ch
35 103 3 e o e
7/ f(CF/ / 0 dédz (;‘dédn)z dédn =0,

~ d&d7
7/ ”@)h‘C(Z*Od%ﬂL*/ yz(;)—/ hlz(z,;“)%dsg

dEdT dEdT
o o r©7 [ e DENa 2 [ o [ e D= e —o,

E/ap Y2(Ohig (2, §)dse +%/8D F©Ohig(z, OdE + ;/Df(C)hI;;(Z,OdEdH =0

are satisfied. Then the solution is

w(z) =co + c1(z — z0) + 2= (z 7—20)° — — f v0(¢) log ; dS;

dEd
——[ V(()—/ _sz_z
[ r0r [ 7 ) s
me A / /?E—dz —_Zzojé—dzdz

—z dédny déd
__/f@)_f / —zzocs—Z(:i;)Zdéd"

Proof Decomposing the problem in a system of Neumann problems for the Bitsadze
and the Cauchy-Riemann equation

wzz =w in D, d,w =y, dywz=1y1 on 3D, w(z9) = co, wz(z0) = c1,
arZ:f in D, 8\)0):)/2 on 4D, a)(Zo)ZCZ’

and inserting w in the form (13) from Theorem 4 into the solution w from Theorem 5
with w in place of f, give the solution in the stated form. Just Lemma 3 from the
appendix is needed. The same procedure is applied to the solvability conditions. O
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Remark 4 The solutions of the Neumann problem for the Bitsadze equation and for
the trianalytic equation show a remarkable pattern. This gives a hint how the respec-
tive solution will look like for the n-analytic equation. But its disadvantage is that the
relation to the polyanalytic equation is not unveiled. Neither is the sum of boundary
integrals seen to form a polyanalytic function nor does the area integral look like a
potential to the respective polyanalytic operator. In this regard, the solution in Theo-
rem 5 is preferable to the form from Corollary 1.

In order to show the relations between the three solutions for the iterated Neumann
problem for the three equations considered so far, two lemmas are exemplarily exposed.
By applying integration by parts, as well the boundary integrals are recognized to be
polyanalytic as the area integral is seen to be a particular solution to the respective
inhomogeneous polyanalytic equation. Somehow the area integral is a higher order
Pompeiu operator in relation to the Neumann conditions. The first lemma does unveil
the relations of the two kernel functions in the boundary integrals in the solution from
Corollary 1.

Lemma2 Forz,¢,z0 € D

07— ~ .
‘m {—zo{—{ g(—zo

1 -z d&dn {—z
lo =1lo
D

Proof In order to apply integration by parts according to Lemma 6, the function

log & = = ﬁ is introduced leading to
— - dEd¥ T —z
—/ ¢ dsdi = —/ 10g£ dz log £ dEdn
—Zoé“—é“ p {—20 ¢ -
§—§ 1 1 ~ 1 {—z (=8¢ =
=—— ~ — = dédny — — log = lo deg.
/ —20 -z c—zo]gn 2mi g;—m g(—zo ¢

As here the boundary integral is an analytic function in z, the result follows from the
property of the Pompeiu operator 7. O

Remark 5 A consequence of this lemma is

Zdédn / -
— — log = = d =— I
/ 71(¢) / OgC—ZOg“—g“ ¢ - @) Og

d NE
Rewriting the integral on the left-hand side as

t-¢, T-z
log = dcdse,
27 aD )277.'1 oD é’ é’ 08 { — 20 { 5¢

its z—derivative is not immediately recognized to be analytic.
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The same method is used to verify that the area integral in the representation of the
solution in Corollary 1 is a particular solution to the inhomogeneous Bitsadze equation.

Lemma3 Forz,{,z0 € D

%l/logf_z gédn = : .
mJp Tt-z200@-0?% (—z

Proof The procedure is as in the previous proof. It provides

iflogf—z dgdi :_iflogf;z
w —za(c—c>2 mJp ¢ -z % ¢
1 A7 7 _
:_/ ~ ]fédn+L_ logg ‘ dg.
{—z ¢—z0d¢—¢ 27 Jyp {—20¢—¢

While the first integral in the preceding line is just

1 1 1 1 - 11 1 | o
;K_Z/D[E_f _E_Z]dgdn_gi—zo/;)[z—ﬁ _E—zo]dgdn’

the second one is an analytic function of z. Thus again by the property of the Pompeiu
operator this shows the required formula. O

Remark 6 A consequence of Lemma 3 is

— 7 dEdF d
82—/ f(;“)—/ _ZZO @igzdwn— ff(c) - .

hence this area integral is a particular solution to the Bitsadze equation. It can also be

written as
1 / 1 {—z (—¢ -~
—— | JO5= / log < —~———d¢dEdn.
7 Jp 2ri Jop T ¢ —z0 (C —0)?
Remark 7 With respect to the trianalytic problem the same treatment results in
d";“dn -z d“g‘dn
ik [ ol [ ! / i
p TJp¢ —208¢—¢

_ 1 Zdédn
= /Vz(é“) /D g“—z; :

Rewriting the area integral of the solution in Theorem 6 as

—Zdédn
—— — d dédndé&dn, 14
o [ - [ e i B daiaedn, (4
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integration by parts shows this to be equal to

1 1 (1 -z 1 |dédy ~
— — — log = | ~——= L dEdTdEd 15
/f(c) / fog T g[f—f]é—_é §dijdgdy (15)
c—z 1 dE
2 2 oe— - dEdnded 16
/f@) /Ogc—zozm oD (;—c)(:—oé sdn- (10

Another integration by parts turns the first integral (15) into

dedn
_ _ ~d&dndéd 17
/f(‘ /Dn/ t—z {—z](i—f)(é—é)s sdn (D

-z dt dEdy
- — = ~= ~d 18
b4 /Df@ 2mi / f C § ;¢ — sdn (18)

Replacing in the second integral (16) E%f by —dz log f:—fo partial integration once

again gives

1 -7 ~_ dt
— — — = log = déd ~déd 19
/2711/(,1) g)n/ t—z ¢-— ]OgC—Zoénf— sdn 19
T-z 17 =dt
= 1 ~ d ~d&dn. 20
ff(g)anf 27”,/3[) C—zo OgC—ZO €§—§ : 0

As the integrals (18) and (20) are analytic and the integral (19), because its z—bar

derivative is
(-7 4
— log =
/f(;“)z]”/ Ogg—zOg c

is bianalytic, then the integral (16) is bianalytic and (14) is up to a bianalytic function
equal to (17). Applying the Bitsadze operator 822 to (15) results in the Pompeiu operator:

1 dedn
32—/ —/ / = dedTded
7 p7mJpll—z —zo]i—é)(f—t)gngn

dEdy f dédn
=0:— — | — =——
nflaf(C)n/L)<z—z)(;—;> 1O

Hence (14) is shown to be a particular solution to the inhomogeneous trianalytic
equation ng = f.

The preceding remark gives a hint for the expected form of solutions to iterated Neu-
mann problems for polyanalytic operators. The obstacle is the form of the solution.
Besides also the solvability conditions need to be observed. This topic is preserved
for the future.
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6 Appendix(Technical Lemmas)
Lemma4 For f, g, h € CY(D; C)NC(D; C) with fr =0, g= = h, in D the relation

1

1
/ f[gdz—i—hdZ]:——f f-hdxdy
2mi Jop 7 Jp

holds.

Lemma 5 (integration by parts.) For f, g € C'(D; C) N C(D; C)

1 1 1 _
! / fogdxdy = — - / Foedxdy — —— / fedz,
T JD T JD 2mi 9D

1 1 1
1 [ frgdxdy = — - / Fosdxdy + —— / fod:
T Jp T JD 2mi oD

are valid.
Corollary 2 The equation

1 dxdy 1 / dxdy 1 dz

Iy G—22G-2) wlpG-z20G—202 27 Jop G—20)z —22)

holds for any 71,z € C.

The proofs are just applications of the Gauss theorem.
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