dc.contributor.author
Duprez, H.
dc.contributor.author
Pierre, F.
dc.contributor.author
Sivre, E.
dc.contributor.author
Aassime, A.
dc.contributor.author
Parmentier, F. D.
dc.contributor.author
Cavanna, A.
dc.contributor.author
Ouerghi, A.
dc.contributor.author
Gennser, U.
dc.contributor.author
Safi, I.
dc.contributor.author
Mora, Christophe
dc.date.accessioned
2021-09-01T08:00:12Z
dc.date.available
2021-09-01T08:00:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31776
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31508
dc.description.abstract
We observe and comprehend the dynamical Coulomb blockade suppression of the electrical conductance across an electronic quantum channel subjected to a temperature difference. A broadly tunable, spin-polarized Ga(Al)As quantum channel is connected on-chip, through a micron-scale metallic node, to a linear RC circuit. The latter is made up of the node's geometrical capacitance C in parallel with an adjustable resistance R∈{1/2,1/3,1/4}×h/e2 formed by 2–4 quantum Hall channels. The system is characterized by three temperatures: Temperatures of the electrons in the large electrodes (T) and in the node (Tnode), and a temperature of the electromagnetic modes of the RC circuit (Tenv). The temperature in the node is selectively increased by local Joule dissipation, and characterized from current fluctuations. For a quantum channel in the tunnel regime, a close match is found between conductance measurements and tunnel dynamical Coulomb blockade theory. In the opposite near ballistic regime, we develop a theory that accounts for different electronic and electromagnetic bath temperatures, again in very good agreement with experimental data. Beyond these regimes, for an arbitrary quantum channel set in the far out-of-equilibrium situation where the temperature in the node significantly exceeds the one in the large electrodes, the equilibrium (uniform temperature) prediction for the conductance is recovered, albeit at a rescaled temperature αTnode.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Coulomb blockade
en
dc.subject
Electrical conductivity
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Dynamical Coulomb blockade under a temperature bias
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
023122
dcterms.bibliographicCitation.doi
10.1103/PhysRevResearch.3.023122
dcterms.bibliographicCitation.journaltitle
Physical Review Research
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
3
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevResearch.3.023122
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2643-1564
refubium.resourceType.provider
WoS-Alert