dc.contributor.author
Faist, Philippe
dc.contributor.author
Berta, Mario
dc.contributor.author
Brandão, Fernando G. S. L.
dc.date.accessioned
2021-08-24T08:49:32Z
dc.date.available
2021-08-24T08:49:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31737
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31468
dc.description.abstract
Recent understanding of the thermodynamics of small-scale systems have enabled the characterization of the thermodynamic requirements of implementing quantum processes for fixed input states. Here, we extend these results to construct optimal universal implementations of a given process, that is, implementations that are accurate for any possible input state even after many independent and identically distributed (i.i.d.) repetitions of the process. We find that the optimal work cost rate of such an implementation is given by the thermodynamic capacity of the process, which is a single-letter and additive quantity defined as the maximal difference in relative entropy to the thermal state between the input and the output of the channel. Beyond being a thermodynamic analogue of the reverse Shannon theorem for quantum channels, our results introduce a new notion of quantum typicality and present a thermodynamic application of convex-split methods.
en
dc.format.extent
42 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
quantum processes
en
dc.subject
thermodynamic implementations
en
dc.subject
optimal universal implementations
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Thermodynamic Implementations of Quantum Processes
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00220-021-04107-w
dcterms.bibliographicCitation.journaltitle
Communications in Mathematical Physics
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
1709
dcterms.bibliographicCitation.pageend
1750
dcterms.bibliographicCitation.volume
384
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00220-021-04107-w
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-0916
refubium.resourceType.provider
WoS-Alert