dc.contributor.author
Wilde, Dominik
dc.contributor.author
Krämer, Andreas
dc.contributor.author
Bedrunka, Mario
dc.contributor.author
Reith, Dirk
dc.date.accessioned
2021-08-09T12:15:35Z
dc.date.available
2021-08-09T12:15:35Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31566
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31298
dc.description.abstract
Off-lattice Boltzmann methods increase the flexibility and applicability of lattice Boltzmann methods by decoupling the discretizations of time, space, and particle velocities. However, the velocity sets that are mostly used in off-lattice Boltzmann simulations were originally tailored to on-lattice Boltzmann methods. In this contribution, we show how the accuracy and efficiency of weakly and fully compressible semi-Lagrangian off-lattice Boltzmann simulations are increased by velocity sets derived from cubature rules, i.e., multivariate quadratures not produced by the Gauß-product rule. In particular, simulations of 2D shock-vortex interactions indicate that the cubature-derived degree-nine D2Q19 velocity set is capable of replacing the Gauß-product rule-derived D2Q25. Likewise, the degree-five velocity sets D3Q13 and D3Q21, as well as a degree-seven D3V27 velocity set were successfully tested for 3D Taylor–Green vortex flows to challenge and surpass the quality of the customary D3Q27 velocity set. In compressible 3D Taylor–Green vortex flows with Mach numbers Ma = {0.5; 1.0; 1.5; 2.0} on-lattice simulations with velocity sets D3Q103 and D3V107 showed only limited stability, while the off-lattice degree-nine D3Q45 velocity set accurately reproduced the kinetic energy provided by literature.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Lattice Boltzmann method
en
dc.subject
Semi-Lagrangian
en
dc.subject
Gauss–Hermite quadrature
en
dc.subject
Compressible
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Cubature rules for weakly and fully compressible off-lattice Boltzmann methods
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
101355
dcterms.bibliographicCitation.doi
10.1016/j.jocs.2021.101355
dcterms.bibliographicCitation.journaltitle
Journal of Computational Science
dcterms.bibliographicCitation.volume
51
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.jocs.2021.101355
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1877-7511
refubium.resourceType.provider
WoS-Alert