dc.contributor.author
Choudhary, Aruni
dc.contributor.author
Kerber, Michael
dc.contributor.author
Raghvendra, Sharath
dc.date.accessioned
2021-08-31T09:35:24Z
dc.date.available
2021-08-31T09:35:24Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30760
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30499
dc.description.abstract
Rips complexes are important structures for analyzing topological features of metric spaces. Unfortunately, generating these complexes is expensive because of a combinatorial explosion in the complex size. For n points in Rd, we present a scheme to construct a 2-approximation of the filtration of the Rips complex in the L∞-norm, which extends to a 2d0.25-approximation in the Euclidean case. The k-skeleton of the resulting approximation has a total size of n2O(dlogk+d). The scheme is based on the integer lattice and simplicial complexes based on the barycentric subdivision of the d-cube. We extend our result to use cubical complexes in place of simplicial complexes by introducing cubical maps between complexes. We get the same approximation guarantee as the simplicial case, while reducing the total size of the approximation to only n2O(d) (cubical) cells. There are two novel techniques that we use in this paper. The first is the use of acyclic carriers for proving our approximation result. In our application, these are maps which relate the Rips complex and the approximation in a relatively simple manner and greatly reduce the complexity of showing the approximation guarantee. The second technique is what we refer to as scale balancing, which is a simple trick to improve the approximation ratio under certain conditions.
en
dc.format.extent
34 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Persistent homology
en
dc.subject
Rips filtrations
en
dc.subject
Approximation algorithms
en
dc.subject
Topological data analysis
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::514 Topologie
dc.title
Improved approximate rips filtrations with shifted integer lattices and cubical complexes
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s41468-021-00072-4
dcterms.bibliographicCitation.journaltitle
Journal of Applied and Computational Topology
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
425
dcterms.bibliographicCitation.pageend
458
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s41468-021-00072-4
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2367-1726
dcterms.isPartOf.eissn
2367-1734