The capability of a degradable implant to provide mechanical support depends on its degradation behavior. Hydrolytic degradation was studied for a polyesteretherurethane (PEEU70), which consists of poly(p-dioxanone) (PPDO) and poly(epsilon-caprolactone) (PCL) segments with a weight ratio of 70:30 linked by diurethane junction units. PEEU70 samples prepared in the form of meshes with average fiber diameters of 1.5 mu m (mesh1.5) and 1.2 mu m (mesh1.2), and films were sterilized and incubated in PBS at 37 degrees C with 5 vol% CO2 supply for 1 to 6 weeks. Degradation features, such as cracks or wrinkles, became apparent from week 4 for all samples. Mass loss was found to be 11 wt%, 6 wt%, and 4 wt% for mesh1.2, mesh1.5, and films at week 6. The elongation at break decreased to under 20% in two weeks for mesh1.2. In case of the other two samples, this level of degradation was achieved after 4 weeks. The weight average molecular weight of both PEEU70 mesh and film samples decreased to below 30 kg/mol when elongation at break dropped below 20%. The time period of sustained mechanical stability of PEEU70-based meshes depends on the fiber diameter and molecular weight.