dc.contributor.author
Zhang, Ben
dc.contributor.author
Zheng, Yijuan
dc.contributor.author
Ma, Tian
dc.contributor.author
Yang, Chengdong
dc.contributor.author
Peng, Yifei
dc.contributor.author
Zhou, Zhihao
dc.contributor.author
Zhou, Mi
dc.contributor.author
Li, Shuang
dc.contributor.author
Wang, Yinghan
dc.contributor.author
Cheng, Chong
dc.date.accessioned
2021-05-03T08:11:04Z
dc.date.available
2021-05-03T08:11:04Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30506
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30246
dc.description.abstract
Electrochemical water splitting has attracted significant attention as a key pathway for the development of renewable energy systems. Fabricating efficient electrocatalysts for these processes is intensely desired to reduce their overpotentials and facilitate practical applications. Recently, metal-organic framework (MOF) nanoarchitectures featuring ultrahigh surface areas, tunable nanostructures, and excellent porosities have emerged as promising materials for the development of highly active catalysts for electrochemical water splitting. Herein, the most pivotal advances in recent research on engineering MOF nanoarchitectures for efficient electrochemical water splitting are presented. First, the design of catalytic centers for MOF-based/derived electrocatalysts is summarized and compared from the aspects of chemical composition optimization and structural functionalization at the atomic and molecular levels. Subsequently, the fast-growing breakthroughs in catalytic activities, identification of highly active sites, and fundamental mechanisms are thoroughly discussed. Finally, a comprehensive commentary on the current primary challenges and future perspectives in water splitting and its commercialization for hydrogen production is provided. Hereby, new insights into the synthetic principles and electrocatalysis for designing MOF nanoarchitectures for the practical utilization of water splitting are offered, thus further promoting their future prosperity for a wide range of applications.
en
dc.format.extent
37 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
electrocatalytic nanostructures and electrocatalysts
en
dc.subject
hydrogen evolution reaction
en
dc.subject
metal-organic frameworks
en
dc.subject
organic frameworks
en
dc.subject
oxygen evolution
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Designing MOF Nanoarchitectures for Electrochemical Water Splitting
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2006042
dcterms.bibliographicCitation.doi
10.1002/adma.202006042
dcterms.bibliographicCitation.journaltitle
Advanced Materials
dcterms.bibliographicCitation.number
17
dcterms.bibliographicCitation.volume
33
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adma.202006042
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1521-4095
refubium.resourceType.provider
WoS-Alert