An active area of investigation in the search for quantum advantage is quantum machine learning. Quantum machine learning, and parameterized quantum circuits in a hybrid quantum-classical setup in particular, could bring advancements in accuracy by utilizing the high dimensionality of the Hilbert space as feature space. But is the ability of a quantum circuit to uniformly address the Hilbert space a good indicator of classification accuracy? In our work, we use methods and quantifications from prior art to perform a numerical study in order to evaluate the level of correlation. We find a moderate to strong correlation between the ability of the circuit to uniformly address the Hilbert space and the achieved classification accuracy for circuits that entail a single embedding layer followed by 1 or 2 circuit designs. This is based on our study encompassing 19 circuits in both 1- and 2-layer configurations, evaluated on 9 datasets of increasing difficulty. We also evaluate the correlation between entangling capability and classification accuracy in a similar setup, and find a weak correlation. Future work will focus on evaluating if this holds for different circuit designs.