dc.contributor.author
Nüske, Feliks
dc.contributor.author
Koltai, Péter
dc.contributor.author
Boninsegna, Lorenzo
dc.contributor.author
Clementi, Cecilia
dc.date.accessioned
2021-04-19T12:29:50Z
dc.date.available
2021-04-19T12:29:50Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30415
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30156
dc.description.abstract
The reduction of high-dimensional systems to effective models on a smaller set of variables is an essential task in many areas of science. For stochastic dynamics governed by diffusion processes, a general procedure to find effective equations is the conditioning approach. In this paper, we are interested in the spectrum of the generator of the resulting effective dynamics, and how it compares to the spectrum of the full generator. We prove a new relative error bound in terms of the eigenfunction approximation error for reversible systems. We also present numerical examples indicating that, if Kramers–Moyal (KM) type approximations are used to compute the spectrum of the reduced generator, it seems largely insensitive to the time window used for the KM estimators. We analyze the implications of these observations for systems driven by underdamped Langevin dynamics, and show how meaningful effective dynamics can be defined in this setting.
en
dc.format.extent
25 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
stochastic differential equations
en
dc.subject
coarse graining
en
dc.subject
infinitesimal generator
en
dc.subject
spectral analysis
en
dc.subject
extended dynamic mode decomposition
en
dc.subject
Kramers-Moyal formulae
en
dc.subject
Langevin dynamics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Spectral Properties of Effective Dynamics from Conditional Expectations
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
134
dcterms.bibliographicCitation.doi
10.3390/e23020134
dcterms.bibliographicCitation.journaltitle
Entropy
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
23
dcterms.bibliographicCitation.url
https://doi.org/10.3390/e23020134
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1099-4300