dc.contributor.author
Xia, Yi
dc.contributor.author
Yang, Hua
dc.contributor.author
Li, Shuang
dc.contributor.author
Zhou, Suqiong
dc.contributor.author
Wang, Liyun
dc.contributor.author
Tang, Yuanjiao
dc.contributor.author
Cheng, Chong
dc.contributor.author
Haag, Rainer
dc.date.accessioned
2021-05-19T11:13:33Z
dc.date.available
2021-05-19T11:13:33Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30243
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29984
dc.description.abstract
Because developed neural cells are no longer regenerative and proliferative, achieving neural regenerations by using induced pluripotent stem cells (IPS cells) for nerve diseases have recently attracted much attention. Since the IPS cells' growth and differentiation can be manipulated by different physical and chemicals cues, scaffolds combining the beneficial nanostructures and extracellular matrix may become an ideal interface to promote IPS cells' neural differentiation. In this work, a biocompatible and multivalent polyanion, hyperbranched polyglycerol sulfate, is used to modify the graphene oxide to obtain bio-adhesive 2D nanosheets. After coating electrospinning nanofibers, the 2D nanosheets-functionalized nanofibrous scaffolds are applied to mediate the proliferation, lineage specification, and neural differentiation of IPS cells. The results suggest that the modified scaffolds can improve the adhesion and proliferation of IPS cells combined with high efficiency in maintaining their stemness. During the neural differentiation process, the scaffolds can promote neural differentiation and their maturity, meanwhile decreasing the lineage specification toward astrocyte. Overall, this study not only provides new multivalent/bio-adhesive nanofibrous scaffolds that integrate the chemical and physical cues to facilitate the targeted neural differentiation of IPS cells but also presents a novel pathway for the fabrication of carbon nanomaterials-based biocomposites in regenerative therapies.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
bio‐adhesive graphene nanostructures
en
dc.subject
adhesive graphene nanostructures
en
dc.subject
multivalent polyanions
en
dc.subject
nanofibrous scaffolds
en
dc.subject
neural differentiation
en
dc.subject
stem cell regeneration
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Multivalent Polyanionic 2D Nanosheets Functionalized Nanofibrous Stem Cell-based Neural Scaffolds
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2010145
dcterms.bibliographicCitation.doi
10.1002/adfm.202010145
dcterms.bibliographicCitation.journaltitle
Advanced Functional Materials
dcterms.bibliographicCitation.number
20
dcterms.bibliographicCitation.volume
31
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adfm.202010145
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1616-3028
refubium.resourceType.provider
WoS-Alert