dc.contributor.author
Stripp, Sven T.
dc.contributor.author
Mebs, Stefan
dc.contributor.author
Haumann, Michael
dc.date.accessioned
2021-04-28T12:25:02Z
dc.date.available
2021-04-28T12:25:02Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30182
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29923
dc.description.abstract
[FeFe]-hydrogenases are nature’s blueprint for efficient hydrogen turnover. Understanding their enzymatic mechanism may improve technological H2 fuel generation. The active-site cofactor (H-cluster) consists of a [4Fe-4S] cluster ([4Fe]H), cysteine-linked to a diiron site ([2Fe]H) carrying an azadithiolate (adt) group, terminal cyanide and carbon monoxide ligands, and a bridging carbon monoxide (μCO) in the oxidized protein (Hox). Recently, the debate on the structure of reduced H-cluster states was intensified by the assignment of new species under cryogenic conditions. We investigated temperature effects (4–280 K) in infrared (IR) and X-ray absorption spectroscopy (XAS) data of [FeFe]-hydrogenases using fit analyses and quantum-chemical calculations. IR data from our laboratory and literature sources were evaluated. At ambient temperatures, reduced H-cluster states with a bridging hydride (μH–, in Hred and Hsred) or with an additional proton at [4Fe]H (Hred′) or at the distal iron of [2Fe]H (Hhyd) prevail. At cryogenic temperatures, these species are largely replaced by states that hold a μCO, lack [4Fe]H protonation, and bind an additional proton at the adt nitrogen (HredH+ and HsredH+). XAS revealed the atomic coordinate dispersion (i.e., the Debye–Waller parameter, 2σ2) of the iron–ligand bonds and Fe–Fe distances in the oxidized and reduced H-cluster. 2σ2 showed a temperature dependence typical for the so-called protein–glass transition, with small changes below ∼200 K and a pronounced increase above this “breakpoint”. This behavior is attributed to the freezing-out of larger-scale anharmonic motions of amino acid side chains and water species. We propose that protonation at [4Fe]H as well as ligand rearrangement and μH– binding at [2Fe]H are impaired because of restricted molecular mobility at cryogenic temperatures so that protonation can be biased toward adt. We conclude that a H-cluster with a μCO, selective [4Fe]H or [2Fe]H protonation, and catalytic proton transfer via adt facilitates efficient H2 conversion in [FeFe]-hydrogenase.
en
dc.format.extent
39 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Crystal structure
en
dc.subject
Fourier transform infrared spectroscopy
en
dc.subject
Extended X-ray absorption fine structure
en
dc.subject
Infrared light
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Temperature Dependence of Structural Dynamics at the Catalytic Cofactor of [FeFe]-hydrogenase
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
79451
dcterms.bibliographicCitation.doi
10.1021/acs.inorgchem.0c02316
dcterms.bibliographicCitation.journaltitle
Inorganic Chemistry
dcterms.bibliographicCitation.number
22
dcterms.bibliographicCitation.originalpublishername
American Chemical Society
dcterms.bibliographicCitation.originalpublisherplace
Washington, DC
dcterms.bibliographicCitation.pagestart
16474
dcterms.bibliographicCitation.pageend
16488
dcterms.bibliographicCitation.volume
59
dcterms.bibliographicCitation.url
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02316
dcterms.rightsHolder.url
https://publish.acs.org/publish/author_guidelines?coden=mamobx#prior_publication_policy
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
0020-1669