Given the importance of emotion regulation as a transdiagnostic factor in the development of psychopathology, a myriad of neuroimaging studies has investigated its neural underpinnings. However, single studies usually provide limited insight into the function of specific brain regions. Hence, to better understand the interaction between key regions involved in emotion generation and regulation, we performed a coordinate-based meta-analysis on functional magnetic resonance imaging (fMRI) studies that examined emotion regulation-modulated connectivity of the amygdala using psychophysiological interaction (PPI) analysis. We analyzed fifteen PPI studies using the activation likelihood estimation (ALE) algorithm. Investigating emotion regulation-modulated connectivity independent of regulation strategy and goal revealed convergent connectivity between the amygdala and the left ventrolateral prefrontal cortex (vlPFC), which was primarily driven by PPI studies implementing reappraisal as a regulation strategy. A more focused analysis testing for effective coupling during the downregulation of emotions by using reappraisal specifically revealed convergent connectivity between the amygdala and the right dorsolateral prefrontal cortex (dlPFC), the left ventrolateral prefrontal cortex (vlPFC), and the dorsomedial prefrontal cortex (dmPFC). These prefrontal regions have been implicated in emotion regulatory processes such as working memory (dlPFC), language processes (vlPFC), and the attribution of mental states (dmPFC). Our findings suggest not only a dynamic modulation of connectivity between emotion generative and regulatory systems during the cognitive control of emotions, but also highlight the robustness of task-modulated prefrontal-amygdala coupling, thereby informing neurally-derived models of emotion regulation.