Dielectric water properties, which significantly change in confinement, determine electrostatic interactions and thereby influence all molecular forces and chemical reactions. We present comparative simulations of water between graphene sheets, decanol monolayers, and phospholipid and glycolipid bilayers. Generally, dielectric profiles strongly differ in perpendicular and parallel surface directions and for large surface separation decay to the bulk value 1-2 nm away from the surface. Polar surface groups enhance the local interfacial dielectric response and for phospholipid bilayers induce a giant parallel contribution. A mapping on a box model with asymptotically determined effective water layer widths demonstrates that the perpendicular effective dielectric constant for all systems decreases for confinement below a nanometer, while the parallel one stays rather constant. The confinement-dependent perpendicular effective dielectric constant for graphene is in agreement with experimental data only if the effective water layer width is suitably adjusted. The interactions between two charges at small separation depend on the product of parallel and perpendicular effective water dielectric components; for large separation the interactions depend on the confining medium. For metallic confining media the interactions at large separation decay exponentially with a decay length that depends on the ratio of the effective parallel and perpendicular water dielectric components.