State-of-the-art argon KLL Auger spectra measured using photon energies of hν=3216 and 3400 eV are presented along with an Ar [1s] photoelectron spectrum (square brackets indicate holes in the respective orbital). The two different photon energies used for measuring the Auger spectra allow distinguishing between the shake transitions during the Auger decay and the Auger transitions of the photoelectron satellites. A complete assignment of satellite transitions is provided, partially based on configuration-interaction calculations. In addition, Ar [1s3(s,p)]n′l′→[2p2(1D2)] transitions are observed, which can be explained by knock-down transitions leading to a direct exchange of angular momentum between the excited electron and the Auger electron. The lifetime broadenings of the Ar [2s] single-core-hole state and the [2s2] and [2s2p] double-core-hole states are also determined, confirming previously observed trends for double-core-hole states.