dc.contributor.author
Preusker, René
dc.contributor.author
Carbajal Henken, Cintia
dc.contributor.author
Fischer, Jürgen
dc.date.accessioned
2021-03-18T13:42:10Z
dc.date.available
2021-03-18T13:42:10Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29955
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29697
dc.description.abstract
A new retrieval of total column water vapour (TCWV) from daytime measurements over land of the Ocean and Land Colour Instrument (OLCI) on-board the Copernicus Sentinel-3 missions is presented. The Copernicus Sentinel-3 OLCI Water Vapour product (COWa) retrieval algorithm is based on the differential absorption technique, relating TCWV to the radiance ratio of non-absorbing band and nearby water vapour absorbing band and was previously also successfully applied to other passive imagers Medium Resolution Imaging Spectrometer (MERIS) and Moderate Resolution Imaging Spectroradiometer (MODIS). One of the main advantages of the OLCI instrument regarding improved TCWV retrievals lies in the use of more than one absorbing band. Furthermore, the COWa retrieval algorithm is based on the full Optimal Estimation (OE) method, providing pixel-based uncertainty estimates, and transferable to other Near-Infrared (NIR) based TCWV observations. Three independent global TCWV data sets, i.e., Aerosol Robotic Network (AERONET), Atmospheric Radiation Measurement (ARM) and U.S. SuomiNet, and a German Global Navigation Satellite System (GNSS) TCWV data set, all obtained from ground-based observations, serve as reference data sets for the validation. Comparisons show an overall good agreement, with absolute biases between 0.07 and 1.31 kg/m2 and root mean square errors (RMSE) between 1.35 and 3.26 kg/m2. This is a clear improvement in comparison to the operational OLCI TCWV Level 2 product, for which the bias and RMSEs range between 1.10 and 2.55 kg/m2 and 2.08 and 3.70 kg/m2, respectively. A first evaluation of pixel-based uncertainties indicates good estimated uncertainties for lower retrieval errors, while the uncertainties seem to be overestimated for higher retrieval errors.
en
dc.format.extent
23 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
total column water vapour
en
dc.subject
retrieval algorithm
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
Retrieval of Daytime Total Column Water Vapour from OLCI Measurements over Land Surfaces
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
932
dcterms.bibliographicCitation.doi
10.3390/rs13050932
dcterms.bibliographicCitation.journaltitle
Remote Sensing
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.3390/rs13050932
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Weltraumwissenschaften
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2072-4292