dc.contributor.author
Mäusle, Sarah Maya
dc.contributor.author
Abzaliyeva, Aiganym
dc.contributor.author
Greife, Paul
dc.contributor.author
Simon, Philipp S.
dc.contributor.author
Perez, Rebeca
dc.contributor.author
Zilliges, Yvonne
dc.contributor.author
Dau, Holger
dc.date.accessioned
2021-03-16T12:47:45Z
dc.date.available
2021-03-16T12:47:45Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29907
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29649
dc.description.abstract
The mechanism of water oxidation by the Photosystem II (PSII) protein–cofactor complex is of high interest, but specifically, the crucial coupling of protonation dynamics to electron transfer (ET) and dioxygen chemistry remains insufficiently understood. We drove spinach-PSII membranes by nanosecond-laser flashes synchronously through the water-oxidation cycle and traced the PSII processes by time-resolved single-frequency infrared (IR) spectroscopy in the spectral range of symmetric carboxylate vibrations of protein side chains. After the collection of IR-transients from 100 ns to 1 s, we analyzed the proton-removal step in the S2 ⇒ S3 transition, which precedes the ET that oxidizes the Mn4CaOx-cluster. Around 1400 cm−1, pronounced changes in the IR-transients reflect this pre-ET process (∼40 µs at 20 °C) and the ET step (∼300 µs at 20 °C). For transients collected at various temperatures, unconstrained multi-exponential simulations did not provide a coherent set of time constants, but constraining the ET time constants to previously determined values solved the parameter correlation problem and resulted in an exceptionally high activation energy of 540 ± 30 meV for the pre-ET step. We assign the pre-ET step to deprotonation of a group that is re-protonated by accepting a proton from the substrate–water, which binds concurrently with the ET step. The analyzed IR-transients disfavor carboxylic-acid deprotonation in the pre-ET step. Temperature-dependent amplitudes suggest thermal equilibria that determine how strongly the proton-removal step is reflected in the IR-transients. Unexpectedly, the proton-removal step is only weakly reflected in the 1400 cm−1 transients of PSII core complexes of a thermophilic cyanobacterium (T. elongatus).
en
dc.format.extent
14 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Photosynthesis
en
dc.subject
Arrhenius plot
en
dc.subject
Activation energies
en
dc.subject
Reaction rate constants
en
dc.subject
Infrared spectroscopy
en
dc.subject
Equilibrium thermodynamics
en
dc.subject
Deprotonation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Activation energies for two steps in the S_2 → S_3 transition of photosynthetic water oxidation from time-resolved single-frequency infrared spectroscopy
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
215101
dcterms.bibliographicCitation.doi
10.1063/5.0027995
dcterms.bibliographicCitation.journaltitle
The journal of chemical physics
dcterms.bibliographicCitation.number
21
dcterms.bibliographicCitation.originalpublishername
American Institute of Physics
dcterms.bibliographicCitation.originalpublisherplace
Melville, NY
dcterms.bibliographicCitation.volume
153
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1063/5.0027995
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.note.author
Open Access in National- und Allianzlizenz.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
0021-9606