dc.contributor.author
Singh, Rajan
dc.contributor.author
Sarkar, Arnab
dc.contributor.author
Guria, Chitres
dc.contributor.author
Nicholl, Ryan J. T.
dc.contributor.author
Chakraborty, Sagar
dc.contributor.author
Bolotin, Kirill
dc.contributor.author
Ghosh, Saikat
dc.date.accessioned
2021-03-15T09:37:12Z
dc.date.available
2021-03-15T09:37:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29894
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29636
dc.description.abstract
High quality factor mechanical resonators have shown great promise in the development of classical and quantum technologies. Simultaneously, progress has been made in developing controlled mechanical nonlinearity. Here, we combine these two directions of progress in a single platform consisting of coupled silicon nitride (SiNx) and graphene mechanical resonators. We show that nonlinear response can be induced on a large area SiNx resonator mode and can be efficiently controlled by coupling it to a gate-tunable, freely suspended graphene mode. The induced nonlinear response of the hybrid modes, as measured on the SiNx resonator surface is giant, with one of the highest measured Duffing constants. We observe a novel phononic frequency comb which we use as an alternate validation of the measured values, along with numerical simulations which are in overall agreement with the measurements.
en
dc.format.extent
26 S. (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Mechanical Nonlinerity
en
dc.subject
Frequency Comb
en
dc.subject
Silicon Nitride
en
dc.subject
Hybrid Resonators
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Giant Tunable Mechanical Nonlinearity in Graphene–Silicon Nitride Hybrid Resonator
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acs.nanolett.0c01586
dcterms.bibliographicCitation.journaltitle
Nano Letters
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.originalpublishername
ACS Publishing
dcterms.bibliographicCitation.originalpublisherplace
Washington, DC
dcterms.bibliographicCitation.pagestart
4659
dcterms.bibliographicCitation.pageend
4666
dcterms.bibliographicCitation.volume
20
dcterms.bibliographicCitation.url
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c01586
dcterms.rightsHolder.url
https://publish.acs.org/publish/author_guidelines?coden=langd5#prior_publication_policy
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1530-6984