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High quality factor mechanical resonators have shown great promise in developing
classical or quantum technologies. Simultaneously, progress has been made in devel-
oping controlled mechanical nonlinearity. Here we combine these two directions of
progress in a single platform consisting of coupled Silicon Nitride (SiNx) and graphene
mechanical resonators. We show that nonlinear response can be induced on a large area
SiNx resonator mode and can be efficiently controlled by coupling it to a gate-tunable,
freely suspended graphene mode. The induced nonlinear response of the hybrid modes,
as measured on the SiNx resonator surface is giant, with one of the highest measured
Duffing constants. We observe a novel phononic frequency comb which we use as an
alternate validation of the measured values, along with numerical simulations which
are in overall agreement with measurements.

Introduction

For more than a century, mechanical resonators [1]
have played a central role in measuring forces [2–4] and
testing fundamental physical principles [5–8]. With the
advent of micro and nanoscale mechanical resonators,
and in particular, after experimental observation of their
quantum mechanical behavior [9–12], there has been a
renewed interest in usage of such resonator modes in
classical [13] and quantum technologies [14, 15]. Signif-
icant progress has been made in two broad directions
over the last decade. On one hand, there has been
progress in developing high quality factor (Q) mechan-
ical resonators modes at high resonant frequency (f0)
towards quantum devices at room temperature [16, 17].
Silicon Nitride (SiNx) has emerged as a dominant ma-
terial of choice [18] for such resonators, demonstrating
mechanical Q’s in excess 107 at MHz frequencies [19–21].
On the other hand, progress has been made in develop-
ing tunable mechanical nonlinearity, towards conditional
phase shifts of mechanical modes [13]. Freely suspended
graphene resonator, with low mass and high Young’s
modulus [22–25] resulting in exceptional nonlinear elas-
tic properties [23, 24] along with gate tunable resonant
frequency, emerged as an efficient choice; mixing [26–33]
and side-band cooling of its strongly coupled modes have
been observed [34, 35]. A platform that can integrate
these two directions of progress, combining high quality
factors of SiNx resonators with gate tunable response of
graphene resonators can be a logical next step [18].

Here we explore a hybrid platform consisting of a large
area SiNx resonator coupled to an atomically thin, freely
suspended graphene that is deposited on holes etched
on the SiNx. When a mechanical mode of the graphene
resonator is electrostatically tuned into resonance with a
SiNx mechanical mode, we observe the resulting hybrid
modes develop giant nonlinear response to an external

driving force, as measured on the surface of the SiNx
resonator (fig. 1a). To validate the measurements, we
develop an alternate, novel methodology to characterize
third order (Duffing) nonlinear response and damping
coefficients of these hybrid modes. By parametrically
driving the coupled modes, we observe generation of
novel frequency comb and use the measured amplitudes
of the generated comb lines to estimate the nonlinearities
and validate the results. Our measurements are in agree-
ment with numerical simulations of a model of coupled
linear and nonlinear oscillators. The model suggests
that induced nonlinearity of hybrid modes, as measured
on SiNx, is due to back-action force of the nonlinear
graphene resonator and simple scaling estimates are in
agreement with the measured giant values. These result,
verified with two separate measurements, thereby com-
bine two directions of development of electromechanical
resonators in a single hybrid device – a gate tunable
graphene resonator inducing giant nonlinearity in a
high-Q mechanical mode of a large area SiNx resonator
(fig. 1a).

Nonlinear response of Graphene - Silicon Nitride
Hybrid

The device consists of a 300 nm thick SiNx resonator
of dimensions 320 × 320 µm2, with through holes of di-
ameters 10, 15, and 20 µm etched on to it (fig. 1b) and
monolayer (CVD) graphene is deposited on the holes [36].
Both graphene and SiNx resonators are actuated electro-
statically with a highly doped silicon back gate, sepa-
rated by an insulator which results in a net separation
of 10 µm between graphene/SiNx and back gate. A fiber
based confocal microscope, as part of a path stabilized
Michelson interferometer, is used to detect optical signals
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Figure 1: Nonlinear response of graphene-SiNx modes: (a) A cartoon depicting gate tunable, linear to nonlinear response
of a SiNx resonator mode, due to its strong coupling to graphene. We observe oscillations of the hybrid mode with a confocal
microscope, either focused on an atomically thin graphene or on the large area SiNx resonator surface (3d cartoon). (b)
Scanning electron micrograph of the device with the large area SiNx resonator (320 × 320 × 0.3µm3, in grey) with graphene
deposited onto 20, 15, and 10 µm diameter holes etched on it. The 20µm diameter, intact graphene drum, coupling to SiNx is
the focus of this study (see SI). (c) Thermally driven 20µm graphene fundamental mode dispersion with the d.c. gate voltage
interacting with array of SiNx modes. The right panel shows a cross-section at 194 V, where graphene hybridizes strongly with
a single SiNx mode. (d) Corresponding dispersion of SiNx modes with dc gate voltage. The dispersion profile of fundamental
modes of both the 20 µm and the 15 µm diameter graphene resonators can be observed, imprinted on SiNx dispersion, a
signature of their backaction force. (e) Peak amplitude of three SiNx modes under direct a.c. drive shows linear response
when not in resonance with the graphene mode. (f) When on resonance with low-Q graphene mode, response of the SiNx
modes modifies due the back action of graphene, becoming nonlinear (dots). Solutions for steady-state amplitude of a Duffing
oscillator fit well with the data points (solid line) (see SI).
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reflected from the sample (3d cartoon of fig. 1a).
When the microscope is focused on a 20 µm freely

standing graphene membrane, we observe thermally
driven modes, corresponding to that of a circular res-
onator with anisotropic tension [37, 38]. The modes are
tunable in excess of 1 MHz with a d.c. gate voltage
(fig. 1c) and as we tune from 0 V to 250 V, we see
distinct avoided level crossing that signals hybridization
with modes of a SiNx resonator (fig. 1c and right panel).
In a recent work we have found that a bilinear coupling
model fits well with observed hybridized Brownian spec-
tra. From the fitting, we extract the quality factors:
Qg ∼ 254 for graphene and Qs ∼ 3800 for SiNx [37]. The
effective mass of the graphene mode, estimated from dis-
persion of fig. 1c is estimated at mg ∼ 10m0, where m0 is
the mass of a single layer of graphene [37]. We estimate
the effective mass, ms, of SiNx from its dimensions and
density, and find it to be ∼ 104mg [37].
Comparatively heavier mass of SiNx results in smaller

amplitude for the Brownian power spectrum, which is
below our detection sensitivity (see supporting informa-
tion (SI)). However, when the device is actuated with a.c.
gate voltage and the microscope is focused on SiNx sur-
face (away from graphene), we observe dense distribution
of SiNx resonator modes (fig. 1d). The mode-densities
and their dispersion (fig. 1d, right panel) match well
with simulated modes of a square membrane of compa-
rable dimensions with an inbuilt tension of 80 MPa (see
SI).
When SiNx modes are not hybridized with graphene,

the peak amplitudes increase linearly with applied a.c.
gate voltage, up to a maximum amplitude of 20 V that
we can apply in our experiment. In particular, we mea-
sure three modes of SiNx at frequencies 3.071 MHz (mode
1), 3.092 MHz (mode 2), and 3.146 MHz (mode 3) as
shown in fig. 1e. When the low-Q fundamental mode of
graphene is tuned into resonance by applying a d.c. gate
voltage Vg = 210 V, we observe frequency shifts of the
three modes and a increased linear response due to back-
action of the coupled graphene mode (see S.I.). Beyond
a certain gate voltage, the response becomes nonlinear
(fig. 1f). The data fits well with the model of ref. [24],
for the steady state amplitude (xs) of a forced oscilla-
tor with an additional nonlinear response that is cubic
(Duffing) in xs. From fitting, we extract the effective
Duffing constant, βs

hyb, for example, for the hybrid mode

2′ to be βs
hyb2 = 8.0(±0.8)× 1021 N/m3 (see SI). This is

one of the highest measured Duffing constants [39, 40],
orders of magnitude larger than graphene’s reported val-
ues [23, 24].
What leads to such giant Duffing constants for the
hybridized SiNx modes? Aforementioned good fit of
a Duffing model to the SiNx hybrid mode implies the
source to be coupling graphene, a highly nonlinear
Duffing oscillator. It is therefore critical to characterize
the Duffing constant of the graphene resonator. For

the graphene mode, we observe distinct signatures
of Duffing-like hysteresis in response and asymmetric
broadening due to nonlinear damping, when driven on
resonance (see SI). Recent studies have characterized
Duffing constant and nonlinear damping of driven
graphene resonators by accurate fitting of data to
theory [23, 24]. However, in our device, hybridization of
graphene with multiple SiNx modes results in a complex
spectra (see SI). Instead, we develop an alternative
methodology to estimate the nonlinear parameters.

Mechanical frequency comb on Graphene surface

The spectra simplifies, when we drive the system
parametrically at a frequency that is sum of two dom-
inant hybrid modes (fig. 2a) [37]. Parametric drive
leads to gain in only two specific hybrid modes that
are phase matched as opposed to the scenario of direct
driving where multiple modes may interact. From the
corresponding spectra, we develop a methodology to
estimate Duffing constants of bare graphene as well as
that of the hybrid modes as measured on graphene and
on SiNx resonator surfaces.

To parametrically drive the system, we first tune
the fundamental mode of graphene at a frequency, ω0

= 2.865 MHz, at which it strongly hybridizes with
a SiNx mode. With the microscope focused on the
graphene, hybridization of modes is distinctly visible in
the form of a splitting into two modes at frequencies
ω1 and ω2 (say). We simultaneously apply an a.c.
gate voltage (parametric pump) at exactly twice the
resonant frequency, ω0 (fig. 2a). As the amplitude
of the parametric pump voltage is increased, up to a
threshold voltage Vc = 11.9 V we observe gain in both
the hybridized modes (see SI and ref. [37]). Above
threshold, new frequency components on either side
of the two hybridized modes develop. The number of
such modes increases with increasing pump voltage,
eventually spanning out into a “comb” like pattern
(fig. 2b) [30, 32]. We next develop a theoretical model
to account for the new generated comb lines, towards
estimating nonlinearities in the system.

Theoretical Model

A model of graphene as a 1d oscillator with a quality
factor Qg, a third-order nonlinear response described by
an effective Duffing constant (βg

bare) along with nonlinear
damping (ηgbare) [23, 42, 43], coupled to a linear SiNx res-
onator mode explains the observations well. Specifically,
we simulate the following set of equations:
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Figure 2: Parametrically driven modes on graphene: (a) Cartoon depicting graphene-SiNx hybrid mode, probed on
graphene, under parametric pumping at the sum of frequencies of the hybrid modes. Detuning of the pump from this resonance
is defined as δ. (b) Observation of phase coherent frequency comb in the parametrically instability regime, preceded by
non-degenerate parametric amplification. The plot shows displacement power spectrum measured on graphene, with pump
voltage scanned from 11 V to 20 V. (c) Corresponding numerical simulation of the coupled modes of linear SiNx and nonlinear
graphene, driven with a parametric pump of strength ǫp (see SI). Calibrating the amplitudes to fig. 2b gives an estimate of the
Duffing constant and the nonlinear damping of the graphene.

ẍg = − ωg

Qg
ẋg −

ηgbare
mg

x2
gẋg −

βg
bare

mg
x3
g

− [ω2
g + ǫp cos(ωpt)]xg −

α

mg
xs, (1)

and

ẍs = − ωs

Qs
ẋs − ω2

sxs −
α

ms
xg. (2)

Here α is an effective coupling constant, xg,s are the am-
plitudes of vertical displacements of graphene (g) and
SiNx (s) resonators modes respectively, and ǫp denotes
the magnitude of the parametric drive. βg

bare is the Duff-
ing constant of the bare graphene resonator mode while
ηgbare is the coefficient of nonlinear damping.

Numerically simulated spectra is in agreement with
observations (see fig. 2). In particular, we find linear
coupling explains the frequency comb, as opposed to non-
linear couplings in earlier works [26–33]. By fitting sim-
ulated spectra to measured spectra, we get an estimate

for the Duffing constant of the bare (non-hybridized)
graphene mode [25] to be βg

bare = 5.8 × 1013 N/m3 with
a nonlinear damping coefficient ηgbare = 9.7× 106 Ns/m3,
in close agreement with recent measurements [24, 25].

The model further suggest that the essential physical
mechanism behind the comb can be understood with the
normal (hybrid) modes, even in the strong driving regime
(fig. 3). In particular, it is well understood that response
of a parametrically driven mode becomes unstable above
a threshold: beyond threshold, the instability region ex-
tends to form a tongue shaped region [44–47]. The enve-
lope of the tongue is set by pump amplitude, nonlinear
frequency, and damping. Therefore, for two hybridized
modes with frequencies, ω1 and ω2, there should be two
such independent instability tongues (fig. 3a). Conse-
quently, there ought to be a region of overlap (dark region
II, fig. 3a) [48]. While region I and region III correspond
to self-oscillation of hybrid modes 1 and 2 respectively, in
the overlap region II the system is multi-periodic. More-
over, in the instability region, large amplitude leads to
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Figure 3: Quantifying frequency comb: (a) Cartoon of frequency response of a parametrically driven hybrid oscillator
with two hybridized modes with frequencies ω1 and ω2. Above a threshold, each mode develops a tongue shaped instability
region. Accordingly one expects single frequency self-oscillation regimes (grey shades, I and III) while in the region of overlap,
the system oscillates with two frequencies which mix to produce side bands (dark grey, region II). While the left edge of the
envelope is due to the tongue of the hybridized mode ω1, the right edge is due to ω2. This insight leads to an estimation of the
nonlinear coefficients of the hybrid modes. (b) To test the hypothesis of fig. 3a, we scan the pump frequency (δ) at a fixed a.c.
pump voltage (black dashed line). We indeed observe a multi mode, comb spectra (region II) sandwiched between two single
mode self-oscillation regimes (I and III). (c) Numerical simulation varying pump detuning matches well with the experimental
observation. (d) Cross section of the multi-mode spectrum with mode separation of ∼ 28.7 kHz. From the ratios of amplitudes,
we estimate nonlinear coefficients of the hybrid modes, measured on graphene. (e) Proof of phase coherence: measured time
trace of the generated signal of fig. 3d shows a pulse sequence that is Fourier-transform limited, confirming that the pulse is
phase coherent.

strong nonlinear response. One therefore expects mixing
of two accessible frequencies (ω1 and ω2) in the overlap
region II. At a specific parametric drive amplitude (dot-
ted line in fig. 3a), one thereby expects to observe these
three regions.
We indeed observe these three regions when we vary

the pump frequency across ωp = 2ω0 at a fixed drive
amplitude, Vp (dotted line in fig. 3a and also fig. 2a).
In particular, the frequency is scanned over a range of 20
kHz around 2ω0, keeping its amplitude fixed at Vp= 20 V
(fig. 3b). We observe the single frequency self-oscillation
regions I and III, on either side of region II that is charac-
terized by the frequency comb (fig. 3b). Corresponding
experimental observations match well with simulations
(fig. 3c).

Estimating Graphene Nonlinearity

Fig. 3a indicates that the right and the left bound-
aries of region II correspond to the instability tongues of

the hybridized modes, viz., mode 1 and mode 2, respec-
tively. One can then ascribe the observed asymmetry of
the envelope of fig. 2b to differing effective nonlinearities
of the two modes. Furthermore, from the experimen-
tally measured amplitudes (Ai and A′

i, i=1,2,· · · ) of the
new comb lines generated due to cubic nonlinearity and
nonlinear damping, we estimate the average nonlinear
coefficients as βg

hyb1= 1.3(±0.4) × 1015 N/m3, βg
hyb2 =

8.6(±4.6)× 1014 N/m3, ηghyb1 = 7.0(±2.2)× 107 Ns/m3,

and ηghyb2 = 4.8(±2.5) × 107 Ns/m3, for the two hybrid
modes 1 and 2, as measured on the graphene surface (see
SI). The estimated parameters from data are in good
agreement with numerical simulations (see SI), substan-
tiating our methodology.

There is a phase relationship of the generated modes
with respect to the fundamental modes, at frequencies
ω1,2 , and in principle, the nonlinear coefficients can also
be estimated by carefully measuring relative phases of
the generated modes. For the spectrum of fig. 3d, we
observe pulses in time domain (fig. 3e). Repetition rate



6

(a) (b)Parametric Pump Increasing DC Gate Voltage

Graphene
Target SiNx Mode

Frequency 

185 190 195 200 205 210

Gate Voltage(V)

2.9

3.0

3.1

3.2

F
re

q
u

e
n

c
y,

 �
��
��

(M
H

z
)

Sx,s (pm/Hz1/2)
1/2

180

2.8

Probe on SiNx

2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20

S
x
,s
 (

p
m

/H
z

1
/2
)

Frequency,ω/2π (MHz)

2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20

Frequency, ω/2π (MHz)

2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20

Frequency, ω/2π (MHz)

2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20

Frequency, ω/2π (MHz)

 80μm  120μm

 160μm  200μm

 40μm  160μm
 200μm

 80μm
 40μm

 120μm

G
a

in

100

10

1

0 4 8 12 16 20

Pump Voltage (V)

 40μm

S
x
,s
 (

p
m

/H
z

1
/2
)

S
x
,s
 (

p
m

/H
z

1
/2
)

S
x
,s
 (

p
m

/H
z

1
/2
)

coupling OFF

coupling ON

1

1

10Hybrid mode

2.970 MHz
10

100

1

10

100

1

10

100

1

10

100

1
/2

1
/2

1
/2

1
/2

Figure 4: Parametrically driven modes on SiNx: (a) When probed on SiNx, the measured displacement power spectra
shows no response to our maximum paramteric drive amplitude (inset). However, when a graphene mode is tuned into resonance,
we observe parametric gain below a threshold (inset), along with generation of the frequency comb. We again use the comb
lines to estimate nonlinear coefficients of the hybrid, as measured on SiNx resonator. (b) As we move the microscope away
from graphene remaining focused on SiNx, we observe nonlinear response the hybrid modes leading to multimode spectrum at
far distances (4 measurements shown as red spots on a device cartoon along with one at 40 µm on left, fig. 4a). Nonlinear
response of the hybrid modes, for such small displacements of the SiNx surface, results in a giant Duffing constant βs

hyb for
SiNx.

of the pulses correspond to inverse of 2∆ = ω1 − ω2,
pulse width to inverse of the envelope of the generated
comb while the carrier frequency to inverse of the carrier
frequency ω0 = 2.760 MHz (fig. 3d). The frequency
comb of the hybrid mode is therefore phase coherent and
Fourier transform limited.

Induced frequency comb on Silicon Nitride surface

It can be noted that due to widely varying masses and
quality factors of the two physical resonators, values of
Duffing constants of a hybrid mode would differ when
measured on graphene or on SiNx resonator surface (see
SI). Interestingly, signature of the comb spectrum is
also observable, when the microscope is focused on the
surface of the SiNx resonator (fig. 4). However, the
amplitude of oscillations is orders of magnitude smaller
than that on graphene, due to significantly heavier mass
of SiNx. Accordingly, signatures of measured spectrum
are less pronounced. Nevertheless, we use the developed
methodology to estimate Duffing constants of the hybrid
modes on SiNx. In fig. 4, we focus on a SiNx mode at
2.970 MHz, while applying a parametric drive at twice

its resonant frequency. When the fundamental graphene
mode is off-resonant, we do not observe any parametric
gain (blue region on the left of fig. 4a and black dots
in the right inset). However, when the graphene mode
is tuned across resonance with a gate voltage between
193V (approx.) to 200V, we observe generation of fre-
quency comb as well as single frequency self-oscillation
regime. Furthermore, the induced nonlinearity of the
hybrid mode extends over the entire SiNx surface and
we observe generation of combs at distances in excess
of 200 µm from the edge of the graphene drum that
is only 20 µm in diameter (fig. 4b, bottom panel).
Essentially, the localized mode of the graphene acts as a
defect center, on the large area oscillating mode of SiNx.
From amplitudes of the generated modes, we estimate
the effective Duffing constant and nonlinear damping
of the hybrid modes to be βs

hyb1= 3.4(±0.1) × 1023

N/m3, βs
hyb2= 6.3(±5.3) × 1022 N/m3 and ηshyb1=

1.8(±0.1)× 1016 Ns/m3, ηshyb2= 3.3(±2.8)× 1015 Ns/m3

respectively, as measured on SiNx surface (see SI). The
estimates are in close agreement with effective Duffing
constant βs

hyb measured on SiNx in fig. 1f.
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Discussion

To conclude, here we have explored nonlinear response
of graphene-SiNx hybrid modes and developed a method-
ology to quantify corresponding nonlinear coefficients, as
measured on graphene and SiNx resonator surfaces. The
observations suggest that the coupled system can be de-
scribed by two uncoupled, nonlinear hybrid modes. Mea-
sured Duffing constants of these hybrid modes on SiNx
surface are found to be in excess of eight order of mag-
nitude larger than that on graphene. This indicates that
nonlinear response is highly efficient on SiNx surface, set-
ting in at displacement scale that is two orders of magni-
tude smaller, at 30.4 pm, compared to measurement on
graphene.

It is remarkable that an atomically thin resonator gen-
erates a significant backaction force (F ba = αxg) on
SiNx. Based on the F ba, a perturbative estimate yields
βs
hyb ∝ αβg

barem
3
s/m

4
g (see SI) and indicates graphene to

be a powerful candidate to induce such giant nonlinearity
due to three primary factors: firstly, pristine graphene ro-
bustly couples to SiNx substrate via stable electrostatic
forces resulting in a large coupling strength (α). This
also leads to better device yield. Secondly, low mass of
graphene (mg) results in a large amplitude (xg) of oscil-
lation, boosting the force further. Finally, exceptionally
large Young’s modulus results in large nonlinear response
(βg

bare) [24] to an applied force. Large gate tunable back-
action force of graphene thereby emerges as the dominant
mechanism behind observations in this work.

For our device, the tension of SiNx resonator is merely
80 MPa [18], leading to comparatively lower quality fac-
tors (∼ 3000 on average), along with a dense distribution
of SiNx modes (fig. 1d). An immediate improvement
can therefore be towards increasing inbuilt tension of the
SiNx resonator, so that one can resolve mode shapes dis-
tinctly [49] and observe graphene induced interaction be-
tween SiNx modes of quality factors in excess of 106, pos-
sibly in a quantum regime. With such improvements, the
hybrid device proposed here can provide a powerful plat-
form for generating mechanical squeezed states in pre-
cision measurements and controlled interactions of me-
chanical modes both in classical and quantum domains
at room temperature [19–21].

Materials and Methods

Sample preparation:

Silicon Nitride membranes (thickness 300 nm) are fab-
ricated by depositing low-stress silicon-rich silicon nitride
on both sides of a silicon chip. An array of holes of
10, 15 and 20 um diameter is then patterned in the ni-
tride using standard fabrication procedures. A metal-

lic contact (20 nm Au) is deposited onto the top sur-
face of the SiNx to facilitate electrical gating. Mono-
layer chemical vapor deposition (CVD) graphene with
flake size of ∼ 90 × 110 µm2 is then transferred onto
holes in the nitride membranes. We use a high-quality
atmospheric CVD growth and wet transfer. The samples
are subsequently annealed in an Ar−H2 environment at
350◦C. The graphene membranes remained clamped to
the sample chip via Van der Waals interactions forming
suspended circular graphene membranes.

Experimental setup:

We use a fiber based confocal microscope (see SI) with
a spot size of 4 µm to optically probe our graphene-
SiNx hybrid device. The microscope forms one arm of
a Michelson interferometer while the reference arm is ac-
tively stabilized against drifts or fluctuations through a
feedback form PI lock. A frequency and amplitude sta-
bilized external cavity diode laser (ECDL) (λ = 780 nm)
is used as an optical probe. All the measurements were
conducted at probe power of ∼400 µW. The sample is
placed inside a vacuum chamber (10−2 mbar) with high
voltage electrical leads for gate control. The entire cham-
ber assembly is mounted on a 3D scanning stage with
active position locking. For detection, we use a balanced
photo-detector with a detection bandwidth of 45 MHz.
We position the sample by actively monitoring the gen-
erated 2-D confocal image, which helps in selecting the
relative probe position and to lock the microscope there.
The photo-current signal is analyzed with spectrum an-
alyzer and dual-lock-in-amplifier.
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Supporting Information:
Giant Tunable Mechanical Nonlinearity in Graphene-Silicon Nitride Hybrid Resonator

S.1. Experimental method

Experimental Setup: Fig. S.1 below illustrates the experimental setup. Fig. 1c, 2b, 3b, 3d, 4a and 4b in the main
text and S.2-4, S.12 and S.15 in the supplement are taken with spectrum analyzer while Fig. 1d-f in the main text
and S.5-6 and S.7 in the supplement are acquired by scanning the drive frequency from a lock-in-amplifier.
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Figure S.1: Experimental Setup: The figure illustrate the basic structure of the fiber based confocal microscope in interfer-
ometric arrangement used for the measurements.



11

S.2. Calibration

A. Displacement calibration from hybrid Brownian spectrum

Displacements are calibrated by fitting the Brownian spectrum to a model that is based on coupled modes of graphene
and SiNx resonators, denoted by displacements xg and xs, respectively. For thermally driven graphene and SiNx modes
we ignore the nonlinear terms. The equations of motion are then given by:

ẍg + γg
bareẋg + ωg

2xg −
α

mg
xs =

F th
g

mg
(S.1a)

ẍs + γs
bareẋs + ωs

2xs −
α

ms
xg =

F th
s

ms
, (S.1b)

where γk
bare, ωk and F th

k (k = g, s) represent linear damping, normal mode frequency and thermal forces acting on
graphene and SiNx modes respectively. Coupling of graphene and SiNx modes is modeled by an effective interaction
Hamiltonian, Hint = αxgxs[5]. Solving the above coupled equations in Fourier space, the displacement power spectrum
for the graphene resonator is:

S1/2
x,g =

[

κ

(

Sth
F,g

m2
g
{(ω2

s − ω2)2 + (γs
bare)

2ω2}+ {Sth
F,sα

2

m2
sm

2
g
}

[(ω2
g − ω2)(ω2

s − ω2)− γg
bareγ

s
bareω

2 − α2

mgms
]2 + [(ω2

g − ω2)γsω + (ω2
s − ω2)γg

bareω]
2

)

+Snoise

]1/2

, (S.2)

where SF,k = 4kBTγ
k
bare, (k = g, s) is the thermal force acting on graphene (g) and SiNx (s). The calibration

factor, κ along with all other free parameters are extracted by fitting experimental data, S
1/2
v,g (V/

√
Hz) to the above

equation. Using the calibration factor, the recorded spectrum is then converted into displacement spectrum.
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Figure S.2: Brownian spectrum: The displacement spectrum of thermally driven mode of graphene-SiNx hybrid fitted with
equation S2.

Extracted values of the fitting parameters for the Brownian mode corresponding to Fig. S.2 are listed below.

[5] The bi-linear form of interaction is an approximate expression,
derived from an effective Hamiltonian that can be expressed as:
Hint = −

α
2
(xg − xs)2, for small displacements of SiNx and with

renormalized resonant frequencies.
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κ = 1.921(±.074) × 1010 V2/m2, ωg/2π = 2.8646(±.0002) × 106 Hz, ωs/2π = 2.8656(±.0001) × 106 Hz,
γg
bare/2π=11.237(± 0.690)×103 Hz, γs

bare/2π = 0.744(±0.234)× 103 Hz, α/4π2 = 1.978(±0.095)× 10−3 kgHz2.

This model can be extended for graphene interaction with multiple SiNx modes. The supplemental informa-
tion of Singh, R. et.al. [1] can be referred for more information.

We calibrate the amplitude of graphene mode by fitting its thermal or Brownian spectrum to a model of coupled
1d oscillators as shown above. The calibrated thermal mode is then used to calibrate the displacement spectrum of
the parametrically driven mode. Similarly the thermal mode of SiNx is calibrated, either by fitting it to its Brownian
spectrum, or using the calibration from graphene, where we carefully maintain all other microscope parameters.

B. Mass estimation

In order to estimate the mass of graphene, we fitted the fundamental mode dispersion of the graphene drum using
continuum mechanics model [2]. We obtained a good fit for mg = 9.982(±0.008) × m0 (where m0 = 0.625 × 10−16

kg is the mass of pristine residue-free graphene resonator) and tension is 6.91(±0.01)× 10−5 N/m (Fig. S.3).
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Figure S.3: Mass estimation: Gate voltage dependence of the fundamental model for (red points) along with the fit (black
curve) using the model in ref. [2].

C. Calibration with probe power

We studied dependence of thermal motion of hybrid mode of graphene fundamental mode with increasing incident
probe power. The spectrum at different probe powers were recorded and fitted with equation S2. The extracted
calibration factor, κ depicts linear scaling with the probe power. Invoking the equipartition theorem, we estimated
the mode temperature and have not observed significant variation. Overall, these measurements suggest a range up
to 1 mW of probe power over which the graphene mode remains unperturbed. For all measurements reported in this
work, we maintained the probe power at ∼ 400 µW.
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Figure S.4: Response of graphene-SiNx hybrid modes with increasing probe power: (a) Voltage spectrum of a
hybrid mode, measured on graphene and the data is fitted to a model of coupled harmonic modes (equation S2). Spectrums
are shown for different probe powers. (b) Extracted displacement calibration factor (V/m), obtained from data fitting shows a
linear scaling with increasing probe power. (Inset) modes frequencies of graphene (blue dots) and SiNx (green dots) resonators,
showing a small but distinct frequency shift with increasing probe power. We do not fully understand the nature of the
shift. Though this shift suggests decreasing tension of graphene resonator with increasing probe power. (c) The extracted
temperature of the mode shows little variation with probe power.

S.3. Graphene and SiNx resonator modes

A. Nonlinear modes of Graphene resonator

The sample consists of a large area SiNx resonator (320 × 320 × 0.3 µm3), with 20 µm, 15 µm and 10 µm diameter
circular holes etched on to it over which monolayer graphene is deposited, thereby forming suspended drums. The
graphene gets clamped to SiNx at the edges via Van der Waals forces while rest of the part above the hole remains
freely hanging. When the microscope is focused on graphene, we observe its thermo-mechanical spectrum from the
detected signal in a electronic spectrum analyser.
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Figure S.5: Driven hybridized graphene modes: (a) Amplitude plot of weakly driven (linear regime) graphene fundamental
mode that is interacting with multiple SiNx modes. The bottom panel depicts the corresponding phase response. (b) At larger
drive, amplitude and phase response exhibits asymmetric profile with hysteresis, a quintessential signature of cubic nonlinearity.
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Figure S.6: Nonlinearity in graphene modes: (a) Dispersion of driven graphene modes as a function drive voltage. (b)
The peak amplitude of graphene modes as a function of drive voltage.

The dispersion of fundamental mode of graphene as a function dc gate voltage (Fig. 1c) represents deviation of
mode shape from usual Lorentzian shape, due to interaction of the graphene vibrational mode with densely packed,
multiple SiNx modes. Such interactions lead to sharp dips and Fano-like asymmetry in graphene spectrum. The
asymmetry gets more pronounced when the graphene mode is driven on resonance (Fig. S.5a). The corresponding
phase profile shows an overall envelop corresponding to π-phase jump, as one crosses the broad graphene resonance.
However, finer features in phase profile with sharp, intermediate π phase jumps correspond to individual SiNx modes
which are coupled to graphene mode. It can be noted that in general, each of these narrow SiNx modes have a unique
coupling strength to the same graphene.
When driven harder, the broad graphene mode shows an asymmetric signature in spectra that is typical of a Duffing

oscillator with cubic nonlinear response in displacement (Fig. S.5b). Forward and backward sweeps of drive frequency
shows hysteresis in both the amplitude and phase.
Fig. S.6a shows transition from a linear response to a Duffing-like nonlinear response for the graphene mode, coupled
to multiple SiNx modes. The spectrum shows an increase in the FWHM (full width at half maximum) with increasing
drive voltage, pointing towards the existence of nonlinear damping. The amplitude of the modes with drive voltage
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Figure S.7: Silicon Nitride Modes: (a) Amplitude response of driven SiNx modes. In particular the modes marked as 1,
2 and 3 and their interaction with the fundamental graphene mode were studied in detail. (b) Corresponding phase profile
of the SiNx modes. (c) Simulated spatial profiles of modes X, 1, 2 and 3 indicated with their mode number and frequency
respectively. Simulations were performed using COMSOL.

show saturation after a certain drive voltage and the critical voltage for saturation is specific to a given mode (Fig.
S.6b).

B. Modes of large area Silicon Nitride resonator

Silicon Nitride is a large area (320× 320× 0.3 µm3) resonator with through holes. Fig. S.7 shows the amplitude and
phase of weakly driven SiNx modes. The modes are densely packed with quality factor in the range of 1000-4000.
From COMSOL simulation, we estimate the inbuilt tension, Ts ∼ 80 MPa.

C. Linear response of the hybrid Silicon Nitride mode

In Fig. 1e,f in main text, one can see a significant difference between uncoupled and hybridized SiNx mode response
even in the linear response regime. This linear response behavior can be appreciated by noting (Fig. S8) that SiNx
when coupled to graphene experiences two different forces: a direct capacitive force and a back action force from
graphene. Even in the linear regime, the backaction force experienced by SiNx from graphene is larger than the
capacitive force under direct a.c. drive. This is the reason behind the larger displacement or steeper slope in linear
regime of SiNx when on resonant with the graphene. To validate our assertion, we have conducted further experiments,
comparing the two differing linear regimes. In particular, we consider the case when graphene is off resonant to the
SiNx mode. We record the peak amplitude of vibration for SiNx and graphene modes independently, corresponding
to the a.c. voltage. The Fig. S8b and c show the response of SiNx and graphene resonator modes, with the a.c. drive
voltage, respectively. From fitting, we find the slope of graphene response (in linear region) is 470 times larger than
that of SiNx i.e, xc

g ∼ 470× xc
s.

When the SiNx mode is on resonant to the graphene mode, an additional coupling dependent backaction force acts
on the SiNx which can be written as follow: F g→s

ba = α(xc
g − xc

s) ∼ αc
g, x

c
s < xc

g. The displacement experienced by the

SiNx due to this backaction force is: xba
s = F g→s

ba
Qs

msω2

0

= αxc
g

Qs

msω2

0

.

However, we have xc
g = 470 × xc

s. Plugging this relation and typical values of other parameters (Qs = 3000, ω0 =

2.86 MHz,ms = 2.32 × 10−11 kg, α = 1.19 × 10−3 kgHz2) in above equation, yields
xba
s

xc
s

= 14. The result suggests

that the displacement of SiNx mode due to backaction force is 14 times larger than that of capacitive force. This is
consistent with the observation of Fig. 1e and f, main text, where a larger linear response is observed on SiNx, when
on resonant with graphene. It can be noted that such displacements are still smaller than the nonlinear threshold
displacement of SiNx. However, when the graphene is driven into nonlinear regime, the response of the hybrid mode,
as measured on SiNx also becomes nonlinear.
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Figure S.8: Silicon Nitride response under different condition: (a, top panel) Graphene far off resonant to SiNx mode
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to the capacitive force. The backaction force which itself is nonlinear coax a linear SiNx mode to display nonlinear behavior.
(b) Amplitude response of SiNx with drive voltage. (c) Amplitude response of graphene with drive voltage. (d) Amplitude
vs. drive voltage of SiNx when on (blue) resonant and off (red) resonant to graphene.

D. Nonlinear response of hybrid Silicon Nitride modes under direct driving

We observe SiNx modes, respond linearly to external drive when it is off resonant from graphene mode. However,
when we couple a graphene mode to the SiNx mode, its response becomes nonlinear with applied forces and shows
saturation in amplitude above a critical displacement.
To quantify nonlinear response of the SiNx modes, we follow the procedure described in D. Davidovikj et. al. [3]. We

first extract the slope from the linear region of xs vs Vac plot (Fig. 1e, main text). The rescaled force, F corresponding
to the Vac is given by,

F = slope
ω2
sms

Qs
Vac. (S.3)

This rescaled force is plotted with xs, the steady-state response of a Duffing oscillator, such that [3]:

ζF = (Ax2
s +Bx4

s + Cx6
s)

1/2 (S.4)

where C = 9
16 (β

s
hyb)

2. Here ζ depends on the geometry of the mode and is of the order of 1.

Mode 4' : 3.142 MHz(c)

0 15 30 45

0.00

0.15

0.30

0.45

F
o

rc
e

 (
n

N
)

Displacement (pm)

0 15 30 45

0.0

0.2

0.4

0.6

0.8

F
o

rc
e

 (
n

N
)

Displacement (pm)

Mode 2' : 3.088 MHz(b)

0 15 30 45 60

0.00

0.15

0.30

0.45

0.60

0.75

F
o

rc
e

 (
n

N
)

Displacement (pm)

Mode 1' : 3.067 MHz(a)

Figure S.9: Nonlinear response of hybrid SiNx modes: (a, b, c) Force vs peak displacement plot of hybrid modes 1′, 2′

and 4′ respectively, when coupled to graphene and probed on SiNx. SiNx modes experience a capacitive force due to ac gate
voltage and a dominant backaction force from the graphene.
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The value of βs
hyb1 for hybrid mode 1′ extracted from fitting result (Fig. S.9) is 5.6(±0.5)×1021 N/m3. Similarly for

hybrid mode 2′, βs
hyb2 = 8.0(±0.8)× 1021 N/m3 and for hybrid mode 4′, βs

hyb4 = 7.6(±0.2)× 1021 N/m3 respectively.
One can also estimate the nonlinear coefficient of the hybrid SiNx modes using critical displacement of that mode [4].
It is given by:

βs
hyb = 1.54

msω
2
s

Qsx
s,cr
hyb

2 (S.5)

For hybrid mode 1′, xs,cr
hyb = 38.2 pm and Qs = 1316.5 result in βs

hyb1 = 7.1(±1.6)×1021 N/m3. Similarly for hybrid

mode 2′, βs
hyb2 = 7.6(±1.5) × 1021 N/m3 and for hybrid mode 4′, βs

hyb4 = 7.1(±1.2) × 1021 N/m3. It is remarkable
to note that the hybrid modes of SiNx are well described by a Duffing-oscillator model and therefore, induced SiNx
nonlinearities can be effectively described by Duffing constants for hybrid modes.

S.4. Giant, induced nonlinearity measured on SiNx surface

Here we provide few technical justifications for our usage of the term giant nonlinearity for Duffing constant as
measured on SiNx surface of graphene-SiNx hybrid modes. Our justification is based on two estimates, all of which
show orders of magnitude changes: (i) a comparison of nonlinear threshold of our hybrid modes to that of bare
SiNx resonators without hybridization, as measured by different groups [4], (ii) a comparison of average thermal
displacement and threshold displacement for the onset of nonlinearity for bare graphene, SiNx and hybrid SiNx
modes show four orders of magnitude reduction in ratio for hybrid modes. We further discuss the importance of
having induced and tunable nonlinearity of SiNx resonator modes.

A. Comparison of nonlinear threshold displacements for bare and hybrid SiNx resonators:

The threshold displacement corresponding to the bare SiNx (xs,cr
bare) is extracted using following relation:

xs,cr
bare = xs,cr

hyb

√

βs
hyb

βs
bare

(S.6)

where βs
hyb and βs

bare(= 5 × 1012 N/m3) denotes hybrid and bare (following ref. [4]) Duffing constant of SiNx. For

mode 1, βs
hyb1 = 7.1× 1021 N/m3 and xs

hyb1 = 38 pm results in xs,cr
bare = 1.2 µm. Similarly for mode 2, xs,cr

bare = 1.4 µm

and for mode 3, xs,cr
bare = 1.2 µm. One can therefore note that such estimated displacement for onset of nonlinearity

is 5 order of magnitude larger than that of hybrid SiNx.

B. Comparison of thermal displacement and displacement corresponding to nonlinear threshold:

The ratio of nonlinear threshold (xg,cr
bare) and thermal displacement (xg

th) for bare graphene is (4.6 × 10−9/1.04 ×
10−12=) 4.4×103. Using our parameters and results of ref. [4], in case of bare SiNx, the ratios are (1.4×10−6/24.5×
10−15 =)5.9× 107, (1.2× 10−6/23.7× 10−15 =)5.0× 107 and (1.2× 10−6/25.4× 10−15 =)4.7× 107 for mode 1, 2 and
3 respectively.

However, for the same hybrid mode measured on graphene, ratio is (1.0 × 10−9/1.04 × 10−12=) 1.0 × 103 and
(1.2× 10−9/1.04× 10−12=)1.1× 103, same order as that of bare graphene.

In case of SiNx hybrid modes the ratio drops by four orders of magnitude to (38.2×10−12/24.5×10−15 =)1.6×103,
(30.4× 10−12/23.7× 10−15 =)1.3× 103 and (31.5× 10−12/25.4× 10−15 =)1.2× 103.

C. Relevance of induced nonlinearity of SiNx modes:

SiNx resonators have shown significant promise of observing quantum mechanical behavior for high-Q mechanical
resonators at room-temperature. However, one needs to engineer nonlinearty in such a quantum device, to make it
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useful. After all, fluctuations of a classical resonator in thermal state is similar in shape in phase space to that of
fluctuations of a linear harmonic oscillator deep in the quantum regime, dominated by zero point motion. For the
resonator to be useful for precision measurement, one requires to squeeze the fluctuations in one quadrature: this
require nonlinear interactions. Similarly, for gate operations in information devices, it is necessary to have conditional
switching and phase shifts, both of which require nonlinear interactions between modes.

S.5. Theoretical model

In this section, we analyze the model and find that the nonlinear system can be described by hybrid modes to some
extent, akin to that of normal modes for a corresponding linear system.

A. Coupled linear SiNx and nonlinear graphene resonator

Our model is based on coupled modes of graphene and SiNx resonators, denoted by 1-dimensional amplitudes xg and
xs, respectively and is described by the set of equations:

ẍg = −γg
bareẋg −

ηgbare
mg

xg
2ẋg −

βg
bare

mg
xg

3 − [ω2
g + ǫp cos(ωpt)]xg +

α

mg
xs (S.7a)

ẍs = −γs
bareẋs − ω2

sxs +
α

ms
xg (S.7b)

where γk
bare and ωk (k = g, s) represent linear damping and frequency of graphene and SiNx modes. Nonlinearity of

graphene is quantified with two parameters: nonlinear damping ηgbare and a cubic nonlinear response, characterized
by its Duffing coefficient βg

bare. The graphene mode is bilinearly coupled to a SiNx mode which is modeled by an
effective interaction Hamiltonian, Hint = αxgxs, where α is a coupling constant. SiNx is considered to be a linear
oscillator in the range of forcing that we apply in our experiments.

B. Normal modes at low-amplitudes: probe on graphene and on SiNx resonators

At low external forcing, one can ignore nonlinear terms and thereby define two normal modes x1 and x2. These
modes extend over the entire device. However, we detect either on graphene (xg) or on SiNx (xs), which can be
expressed as:

xg =
1

2
√

α/ms

(x2 + x1) = xg
2 + xg

1, (S.8a)

and

xs =
1

2
√

α/mg

(x2 − x1) = xs
2 − xs

1 (S.8b)
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Figure S.10: Experimental schematics: Probing the two resonators graphene and SiNx, which according to equations S.7a,b
detects the motion of the coupled hybrid mode (i.e. mode 1 and mode 2).

The detected amplitudes of normal mode x1 (or x2) on grpahene or SiNx are scaled by the ratio of square-root of
respective masses (ms/mg ∼ 104). As a result, amplitude of normal mode 1 (mode 2) on graphene i.e. xg

1 (xg
2) is two

orders of magnitude larger than the amplitude of the same mode, xs
1 (xs

2), detected on SiNx surface. Accordingly, we
have two Duffing constants for mode 1 (mode 2): βg

hyb1 (βg
hyb2) detected on graphene and βs

hyb1 (βs
hyb2) detected on

SiNx.

C. Perturbative estimation I: Difference in β
g/s
hyb, measured on SiNx and graphene surfaces

The difference in scales of Duffing constants measured on SiNx and on graphene surfaces, can be understood in
the following way: it can be noted that the nonlinear forcing (FNL) of a hybrid mode is uniform all along the spatial
extent of the mode. However, since the hybrid mode for our device has physically two different kinds of oscillators with
varying masses and surface areas, the force can be expressed as: FNL = βg

hybx
3
g = βs

hybx
3
s, as measured on graphene

(xg) or on SiNx (xs). For a forcing F0 and assuming a steady state amplitude of xg,s ∼ F0Qg,s/(mg,sω
2
0) for graphene

and SiNx, leads to an approximate ratio of the measured Duffing coefficients βs
hyb/β

g
hyb ∼ (msQg/mgQs)

3 ∼ 109.

This is in accordance with our measured values of βg,s
hyb on graphene and on SiNx and provides a simple explanation

of the giant nonlinearity measured on SiNx resonator surface.

D. Perturbative estimation II: effective nonlinearity

To get an estimate of effective scaling of induced Duffing constant of SiNx hybrid mode, βs
hyb to that of graphene’s

mass (mg), bare Duffing constant, βg
bare and coupling α, perturbatively, let us consider the following simplified

equations:

ẍg + ω2
0xg +

βg
bare

mg
x3
g − αgxs = 0 , (S.9a)

ẍs + ω2
0xs − αsxg = 0 . (S.9b)

where αi = α/mi, (i = g, s) and damping is ignored.
For uncoupled graphene mode (αg = 0) and assuming βg

barex
3
g ≪ 1, standard perturbation methods yields a

(zeroth-order) solution of the form:

x(0)
g = Ag cos

[(

ω0 + βg
bare

3A2
g

8ω0mg

)

t

]

−
βg
bareA

3
g

32ω2
0mg

(cosω0t− cos 3ω0t) . (S.10)
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where Ag is a constant set by initial conditions. Substituting this zeroth order expression of x
(0)
g in equation S.9a, we

arrive at

ẍs + ω2
0xs −

βs
hyb

ms
x3
s = B cosω0t, (S.11)

where, we have recognized cosω0t as x
(0)
s /As (As being x

(0)
s when xs and xg are uncoupled) and defined:

B ≡ αsAg −
αsβ

g
bareA

3
g

8ω2
0mg

, (S.12)

βs
hyb ≡

αsβ
g
bareA

3
g

8ω2
0mgA3

s

. (S.13)

Here, in the definition of B, we have ignored frequency correction.
Substituting the values of Ag,s = F0Qg,s/mg,sω

2
0 in above expression cancels the common forcing (F0) yielding an

expression that depends only on the system parameters:

βs
hyb ≡

αβg
barem

3
sQ

3
g

8ω2
0m

4
gQ

3
s

(S.14)

where α is the coupling strength between two resonators, βg
bare is the Duffing constant of the bare grapene mode,

ms(mg) is the mass of SiNx (graphene) resonator, ω0 is the on-resonant frequency of both the resonators, and Qs(Qg)
is the quantity factor of SiNx (graphene) modes.
We further note that the sign of α determines whether the SiNx is effectively a soft or a hard nonlinear oscillator.

From the expression of βs
hyb, one can then express an effective scaling as:

βs
hyb ∝ αβg

barem
3
s

m4
g

. (S.15)
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S.6. Frequency comb I: estimating nonlinear coefficients

We first develop a numerical model that reproduce the experimental observation of the frequency comb. Simulations
results thereby give us estimate of βg

bare and ηgbare. Next, we develop a general methodology to estimate nonlinear
coefficients from measured experimental spectra on a general resonator surface. We finally apply the methodology to
estimate βk

hyb and ηkhyb (k = g, s), as measured on graphene or SiNx surface.

A. Estimating nonlinear coefficient from simulated spectra

The parameters used in numerical simulation of equations S.7a,b were extracted by fitting the Brownian spectrum
(Fig. S.2) of graphene (equation S.2) and are listed in Table I. By varying the free parameters i.e. βg

bare and ηgbare, we
carefully calibrate and match the spectra in the instability region, where the comb is generated. The flow diagram in
Fig. S.11 describes the methodology of nonlinearity estimation.

Extracted parameters from thermal 

spectrum 

(𝑚𝑚𝑔𝑔, 𝑚𝑚𝑠𝑠,ω𝑔𝑔, ω𝑠𝑠,γ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔
,γ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠 ,α)

Numerical simulation
Input free parameters

(β𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔
, η𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔

)

Calculation of βℎ𝑦𝑦𝑏𝑏𝑦𝑔𝑔/𝑠𝑠
,ηℎ𝑦𝑦𝑏𝑏𝑦𝑔𝑔/𝑠𝑠

; using peak 

values 

Compare with 

calculated values 

from experimental 

data Multi-peak spectrum

Figure S.11: Nonlinearity estimation from simulation: The flow diagram represents our method to estimate the nonlinear
coefficients βg

bare and ηg
bare.

Table I: Parameters for numerical simulation

Parameter unit Fig. 2c, main text Fig. 3c, main text

mg kg 10× 0.625× 10−16 10× 0.625× 10−16

ms kg 2.38× 10−11 2.38× 10−11

ωg s−1 2π × 2.864× 106 2π × 3.005× 106

ωs s−1 2π × 2.866× 106 2π × 3.007× 106

γg
bare s−1 2π × 25050 2π × 8045.8

γs
bare s−1 2π × 744 2π × 496.4

α kgs−2 4π2
× 2.328× 10−3 4π2

× 3.4× 10−3

βg
bare N/m3 5.8× 1013 1.07× 1012

ηg
bare Ns/m3 9.8× 106 7.5× 104

Numerically, we observe that the asymmetry in the envelop of the generated comb increases when nonlinear co-
efficient (βg

bare) is increased (Fig. S.12a) while the slope of the envelop changes with non-linear damping coefficient
(ηgbare) (Fig. S.12b). The overall asymmetric fan-like shape of the generated comb is therefore a result of interplay
between nonlinear damping and Duffing nonlinearity.
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Figure S.12: Interplay of Duffing constant and nonlinear damping: The simulated profile of the instability region
depends on the values of βg

bare and ηg
bare, the curves illustrate the envelop of the instability region in accordance with Fig. 3a,

main text. (a) For a fixed ηg
bare the asymmetry of the profile increases with increasing βg

bare values. (b) For a fixed βg
bare value,

the simulated profile becomes narrower with increasing ηg
bare values.
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Figure S.13: Multimode spectrum on graphene: (a) Selected cross-sectional plots of graphene-SiNx hybrid on graphene
as a function of pump voltage from Fig. 2b, main text. (b) Plot of gain as a function of pump voltage for the hybrid modes
up to the critical voltage, the fitting curves were referred from ref. [1].

B. Methodology of nonlinearity estimation

Here we describe the methodology we use to estimate nonlinear coefficients from observed frequency combs on
graphene and SiNx surfaces. When modes are driven at twice the resonance frequency, we observe parametric gain
(Fig. S.13) in both the hybrid modes below a threshold pump voltage. Above threshold, in the self-oscillation regime,
we observe mixing of modes. We attribute this mixing to nonlinearity in the system. Using amplitudes of newly
generated modes, we estimate the corresponding nonlinear coefficients.
In particular, starting with amplitudes of four modes of frequency comb to be A1, A

′

1, A2 and A′

2, such that the
corresponding displacement (measured on graphene or SiNx surface) can be expressed as:
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xk = (A1e
−i∆t +A′

1e
i∆t +A2e

−i3∆t +A′

2e
i3∆t)eiω0t (S.16)

where k = g, s and n∆ (n = 1, 3) is the separation of modes from the central frequency, ω0. Combining equation S.16
with equation S.7, terms corresponding to Duffing nonlinearity and nonlinear damping can be expressed as:

βk
hyb

〈

x2
k

〉

xk + ηkhyb
〈

x2
〉

ẋk =

βk
hyb(A1e

−i∆t +A′

1e
i∆t +A2e

−i3∆t +A′

2e
i3∆t)3eiω0t

+ iηkhyb(A1e
−i∆t +A′

1e
i∆t +A2e

−i3∆t +A′

2e
i3∆t)2

{(ω0 −∆)A1e
−i∆t + (ω0 +∆)A′

1e
i∆t}eiω0t (S.17)

Using rotating wave approximation and collecting the terms corresponding to modes at ∓3∆ from central frequency,
one gets:

(βk
hyb)

2 + (ω0 −∆)2(ηkhyb)
2 = 36

(

A2

A3
1

)2

∆2ω2
0m

2
g (S.18a)

(βk
hyb)

2 + (ω0 +∆)2(ηkhyb)
2 = 36

(

A′

2

A′3
1

)2

∆2ω2
0m

2
g (S.18b)

Similarly, collecting terms corresponding to ∓5∆ from equation S.7 and squaring, yields

9(βk
hyb)

2 + (3ω0 − 5∆)2(ηkhyb)
2 = 100

{

A2
3

(A2
1A2 +A

′

1A
2
2)

2

}

∆2ω2
0m

2
g (S.19a)

9(βk
hyb)

2 + (3ω0 + 5∆)2(ηkhyb)
2 = 100

{

A′2
3

(A′2
1A

′
2 +A1A′2

2)
2

}

∆2ω2
0m

2
g (S.19b)

where A3 and A′

3 depicts amplitude of newly generated modes, emerging at ∓5∆ from central frequency. Solving
equation S.18a and S.19a for the nonlinear coefficients, we finally get:

βk
hyb2 =

ω0∆mg√
12ω0∆

[

100(ω2
0 − 2ω0∆)

A2
3

(A2
1A2 +A′

1A2
2)

2
− 36(9ω2

0 − 30ω0∆)

(

A2

A3
1

)2]1/2

(S.20)

and,

ηkhyb2 =
ω0∆mg√
12ω0∆

[

− 100
A2

3

(A2
1A2 +A′

1A2
2)

2
+ 324

(

A2

A3
1

)2]1/2

(S.21)

where βk
hyb2 and ηkhyb2 are nonlinear damping and Duffing nonlinear coefficient of the left (ω1) hybrid mode. Similarly

solving equation S.18b and S.18b for the right (ω2) hybrid mode we get:

βk
hyb1 =

ω0∆mg√
12ω0∆

[

− 100(ω2
0 + 2ω0∆)

A2
3

(A2
1A2 +A′

1A2
2)

2
+ 36(9ω2

0 + 30ω0∆)

(

A2

A3
1

)2]1/2

(S.22)

ηkhyb1 =
ω0∆mg√
12ω0∆

[

100
A2

3

(A2
1A2 +A′

1A2
2)

2
− 324

(

A2

A3
1

)2]1/2

(S.23)

This method gives an estimate of the nonlinear coefficients of coupled hybrid graphene-SiNx mode from spectral
measurements.
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C. Application I: Estimating nonlinear coefficients on graphene resonator surface

Based on the methodology discussed in appendix, we estimate values of βg
hyb(2,1) and ηghyb(2,1) (corresponding to

experimental data of Fig. 2b, main text) for every pump voltage above threshold (Fig. S.14).
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Figure S.14: Estimated nonlinear parameters: Following our nonlinear coefficient estimation scheme, we determine (a)
nonlinear coefficient, βg

hyb(2,1) and (b) nonlinear damping, ηg
hyb(2,1) values for Fig. 2b, main text. The dashed lines in the plots

indicate the average value of the extracted parameters.

Corresponding values of βg
hyb(2,1) and ηghyb(2,1) as obtained from numerical simulation (corresponding to Fig. 2c,

main text) are also plotted with pump voltage (Fig. S.15). There is an overall agreement between the experimental
observations and numerical simulations.
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Figure S.15: Estimated nonlinear parameters from simulation: We determine (a) nonlinear coefficient, βg
hyb(2,1) and

(b) nonlinear damping, ηg
hyb(2,1) from Fig. 2c, main text. The values of nonlinear coefficients remain fairly constant with the

pump voltage. The dashed lines indicate the average value of calculated parameters.

This method gives an estimate of the nonlinear coefficients of coupled hybrid graphene-SiNx mode from spectral
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measurements.

D. Application II: Estimating Duffing constant on SiNx resonator

We have already established graphene to be nonlinear resonator with many intriguing properties in parametric regime,
which we expect to observe in SiNx at resonance with graphene. However due to huge mass of SiNx, the nonlinear
signature is not easily detectable when probed on SiNx. The signature of parametrically driven graphene-Silicon
Nitride hybrid mode is observed with small number of new generated modes (Fig. S.16). Looking at the asymmetry
we can conclude about large nonlinearity.
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Figure S.16: Frequency comb on SiNx surface: Induced multi-mode spectrum on SiNx as a function of pump voltage.
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Figure S.17: Simulated multimode spectrum on SiNx: Simulation of induced multi-mode spectrum in SiNx.

We simulate using equations S.7a,b, where SiNx is treated as a linear resonator, i.e., βs, ηs = 0 and observe multi-
mode generation in SiNx spectrum (Fig. S.17), further validating our observation. The nonlinear coefficients estimated
from simulation plots (Fig. S.17) using equations S.20-22 and S.23 turns out to be, βs

hyb2(β
s
hyb1) = 4.9×1023(4.7×1023)

N/m3 and ηshyb2(η
s
hyb1) = 2.7× 1016(2.6× 1016) Ns/m3, in harmony with the experimentally measured values.
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