dc.contributor.author
Han, Jie
dc.contributor.author
Morris, Patrick
dc.contributor.author
Treglown, Andrew
dc.date.accessioned
2021-03-11T07:54:18Z
dc.date.available
2021-03-11T07:54:18Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29874
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29615
dc.description.abstract
A perfect Kr-tiling in a graph G is a collection of vertex-disjoint copies of Kr that together cover all the vertices in G. In this paper we consider perfect Kr-tilings in the setting of randomly perturbed graphs; a model introduced by Bohman, Frieze, and Martin [7] where one starts with a dense graph and then adds m random edges to it. Specifically, given any fixed 0 < 𝛼 < 1 − 1∕r we determine how many random edges one must add to an n-vertex graph G of minimum degree 𝛿(G) ≥ 𝛼n to ensure that, asymptotically almost surely, the resulting graph contains a perfect Kr-tiling. As one increases 𝛼 we demonstrate that the number of random edges required “jumps” at regular intervals, and within these intervals our result is best-possible. This work therefore closes the gap between the seminal work of Johansson, Kahn and Vu [25] (which resolves the purely random case, that is, 𝛼 = 0) and that of Hajnal and Szemerédi [18] (which demonstrates that for 𝛼 ≥ 1 − 1∕r the initial graph already houses the desired perfect Kr-tiling).
en
dc.format.extent
37 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
clique tilings
en
dc.subject
random graphs
en
dc.subject
randomly perturbed structures
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Tilings in randomly perturbed graphs: Bridging the gap between Hajnal‐Szemerédi and Johansson‐Kahn‐Vu
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/rsa.20981
dcterms.bibliographicCitation.journaltitle
Random Structures & Algorithms
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
480
dcterms.bibliographicCitation.pageend
516
dcterms.bibliographicCitation.volume
58
dcterms.bibliographicCitation.url
https://doi.org/10.1002/rsa.20981
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1098-2418