dc.contributor.author
Han, Jie
dc.contributor.author
Morris, Patrick
dc.contributor.author
Treglown, Andrew
dc.date.accessioned
2021-03-11T07:54:18Z
dc.date.available
2021-03-11T07:54:18Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29874
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29615
dc.description.abstract
A perfect Kr-tiling in a graph G is a collection of vertex-disjoint copies of Kr that together cover all the vertices in G. In this paper we consider perfect Kr-tilings in the setting of randomly perturbed graphs; a model introduced by Bohman, Frieze, and Martin [7] where one starts with a dense graph and then adds m random edges to it. Specifically, given any fixed 0 < 𝛼 < 1 − 1∕r we determine how many random edges one must add to an n-vertex graph G of minimum degree 𝛿(G) ≥ 𝛼n to ensure that, asymptotically almost surely, the resulting graph contains a perfect Kr-tiling. As one increases 𝛼 we demonstrate that the number of random edges required “jumps” at regular intervals, and within these intervals our result is best-possible. This work therefore closes the gap between the seminal work of Johansson, Kahn and Vu [25] (which resolves the purely random case, that is, 𝛼 = 0) and that of Hajnal and Szemerédi [18] (which demonstrates that for 𝛼 ≥ 1 − 1∕r the initial graph already houses the desired perfect Kr-tiling).
en
dc.format.extent
37 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
clique tilings
en
dc.subject
random graphs
en
dc.subject
randomly perturbed structures
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Tilings in randomly perturbed graphs: Bridging the gap between Hajnal‐Szemerédi and Johansson‐Kahn‐Vu
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/rsa.20981
dcterms.bibliographicCitation.journaltitle
Random Structures & Algorithms
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
480
dcterms.bibliographicCitation.pageend
516
dcterms.bibliographicCitation.volume
58
dcterms.bibliographicCitation.url
https://doi.org/10.1002/rsa.20981
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
![Dieser Normdateneintrag wurde von einer Benutzerin oder einem Benutzer als gültig bestätigt.](/cache_0fdaa16ecf2e120b3856a5a937c7ad56/themes/FuCD/images/authority_control/invisible.gif)
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1098-2418