dc.contributor.author
Saffah, Zouhair
dc.contributor.author
Timesli, Abdelaziz
dc.contributor.author
Lahmam, Hassane
dc.contributor.author
Azouani, Abderrahim
dc.contributor.author
Amdi, Mohamed
dc.date.accessioned
2021-03-05T08:13:31Z
dc.date.available
2021-03-05T08:13:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29820
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29561
dc.description.abstract
The goal of this work is to develop a numerical method combining Radial Basic Functions (RBF) kernel and a high order algorithm based on Taylor series and homotopy continuation method. The local RBF approximation applied in strong form allows us to overcome the difficulties of numerical integration and to treat problems of large deformations. Furthermore, the high order algorithm enables to transform the nonlinear problem to a set of linear problems. Determining the optimal value of the shape parameter in RBF kernel is still an outstanding research topic. This optimal value depends on density and distribution of points and the considered problem for e.g. boundary value problems, integral equations, delay-differential equations etc. These have been extensively attempts in literature which end up choosing this optimal value by tests and error or some other ad-hoc means. Our contribution in this paper is to suggest a new strategy using radial basis functions kernel with an automatic reasonable choice of the shape parameter in the nonlinear case which depends on the accuracy and stability of the results. The computational experiments tested on some examples in structural analysis are performed and the comparison with respect to the state of art algorithms from the literature is given.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Meshless method
en
dc.subject
Radial basic functions
en
dc.subject
Shape parameter
en
dc.subject
Optimization technique
en
dc.subject
Homotopy continuation method
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
New collocation path-following approach for the optimal shape parameter using Kernel method
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
249
dcterms.bibliographicCitation.doi
10.1007/s42452-021-04231-1
dcterms.bibliographicCitation.journaltitle
SN Applied Sciences
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
3
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s42452-021-04231-1
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2523-3971
refubium.resourceType.provider
WoS-Alert