dc.contributor.author
Rosati, Tommaso Cornelis
dc.date.accessioned
2021-04-15T11:13:12Z
dc.date.available
2021-04-15T11:13:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29800
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29541
dc.description.abstract
This thesis studies the large scale behaviour of biological processes in a random en- vironment. We start by considering a system of branching random walks in which the branching rates are determined by a random spatial catalyst. In an appropriate setting we show that this process converges to a superBrownian motion in a space white noise potential. We study the asymptotic properties of this superprocess and prove that it survives with positive probability. We then consider scaling limits of a spatial Λ–Fleming–Viot model, relating it both to the process we just introduced and to a stochastic Fisher-KPP equation. Finally, we study the longtime behaviour of the Kardar–Parisi–Zhang equation on finite volume, proving asymptotic synchroniza- tion and a one force, one solution principle. Our analyses rely on techniques from singular stochastic partial differential equations for the parabolic Anderson model and the KPZ equation, and on the theory of superprocesses.
en
dc.format.extent
viii, 201 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Stochastic PDEs
en
dc.subject
Particle systems
en
dc.subject
Superprocesses
en
dc.subject.ddc
500 Natural sciences and mathematics::510 Mathematics::519 Probabilities and applied mathematics
dc.title
Singular SPDEs and fluctuations of particle systems
dc.contributor.gender
male
dc.contributor.firstReferee
Perkowski, Nicolas
dc.contributor.furtherReferee
Mytnik, Leonid
dc.date.accepted
2020-10-06
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-29800-6
refubium.affiliation
Mathematik und Informatik
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access
dcterms.accessRights.proquest
accept