This study uses an integrated multi-method geoarcheological and geochronological approach to contribute to the understanding of the timing and stratigraphy of the monumental burial mound royal tomb (Königsgrab) of Seddin. We show that the hitherto established radiocarbon-based terminus post quem time frame for the construction of the burial mound of 910–800 BCE is supported by optically stimulated luminescence (OSL) dating. The radiocarbon samples were obtained from a substrate directly underneath the burial mound which supposedly represents the late glacial/Holocene soil that was buried below the structure. We use sedimentological (grain-size analyses) and geochemical analyses (element analyses, carbon, pH, and electric conductivity determinations) to reassess and confirm this hypothesis. In addition to the burial age associated with the last anthropogenic reworking during construction of the burial mound, the OSL dating results provide new insights into the primary deposition history of the original substrates used for the structure. In combination with regional information about the middle and late Quaternary development of the environment, our data allow us to provide a synoptic genetic model of the landscape development and the multiphase stratigraphy of the royal tomb of Seddin within the Late Bronze Age cultural group “Seddiner Gruppe” of northern Germany. Based on our initial experiences with OSL dating applied to the sediments of a burial mound – to the best of our knowledge the first attempt in Europe – we propose a minimal invasive approach to obtain datable material from burial mounds and discuss related opportunities and challenges.