dc.contributor.author
Bittracher, Andreas
dc.contributor.author
Klus, Stefan
dc.contributor.author
Hamzi, Boumediene
dc.contributor.author
Koltai, Péter
dc.contributor.author
Schütte, Christof
dc.date.accessioned
2021-01-29T12:17:51Z
dc.date.available
2021-01-29T12:17:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29403
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29149
dc.description.abstract
We present a novel kernel-based machine learning algorithm for identifying the low-dimensional geometry of the effective dynamics of high-dimensional multiscale stochastic systems. Recently, the authors developed a mathematical framework for the computation of optimal reaction coordinates of such systems that is based on learning a parameterization of a low-dimensional transition manifold in a certain function space. In this article, we enhance this approach by embedding and learning this transition manifold in a reproducing kernel Hilbert space, exploiting the favorable properties of kernel embeddings. Under mild assumptions on the kernel, the manifold structure is shown to be preserved under the embedding, and distortion bounds can be derived. This leads to a more robust and more efficient algorithm compared to the previous parameterization approaches.
en
dc.format.extent
41 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
alanine dipeptide
en
dc.subject
diffusion maps
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Dimensionality Reduction of Complex Metastable Systems via Kernel Embeddings of Transition Manifolds
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
3
dcterms.bibliographicCitation.doi
10.1007/s00332-020-09668-z
dcterms.bibliographicCitation.journaltitle
Journal of Nonlinear Science
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
31
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00332-020-09668-z
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0938-8974
dcterms.isPartOf.eissn
1432-1467
refubium.resourceType.provider
WoS-Alert