We investigate the mean-square displacement (MSD) for random motion governed by the generalized Langevin equation for memory functions that contain two different time scales: In the first model, the memory kernel consists of a delta peak and a single-exponential and in the second model of the sum of two exponentials. In particular, we investigate the scenario where the long-time exponential kernel contribution is negative. The competition between positive and negative friction memory contributions produces an enhanced transient persistent regime in the MSD, which is relevant for biological motility and active matter systems.